Given a category \(\mathsf {Shp}\) of system shapes (e.g. graphs) and a functor \(\kappa : \mathsf {Shp} \to \mathsf {Cat}\) and a category \(\mathbb {C}\) ("labels'' or "control paths") a categorical transition system in the sense of Errington comprises,
- A shape \(J \in \mathsf {Shp}\),
- a functor \(S : \kappa {J} \to \mathbb {C}\).
The appropriate category of such systems is a lax comma (bi)category \(\kappa \downarrow \mathbb {C}\).