
String Diagrammatic Trace Theory
Matthew Earnshaw !Ï

Department of Software Science, Tallinn University of Technology, Estonia

Paweł Sobociński !Ï

Department of Software Science, Tallinn University of Technology, Estonia

Abstract
We extend the theory of formal languages in monoidal categories to the multi-sorted, symmetric case,
and show how this theory permits a graphical treatment of topics in concurrency. In particular, we
show that Mazurkiewicz trace languages are precisely symmetric monoidal languages over monoidal
distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular
symmetric monoidal languages. Furthermore, we prove that Zielonka’s asynchronous automata
coincide with symmetric monoidal automata over monoidal distributed alphabets. Finally, we apply
the string diagrams for symmetric premonoidal categories to derive serializations of traces.

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation
→ Formal languages and automata theory; Theory of computation → Categorical semantics

Keywords and phrases symmetric monoidal categories, string diagrams, Mazurkiewicz traces,
asynchronous automata

Acknowledgements We would like to thank Chad Nester, Mario Román, and Niels Voorneveld for
helpful conversations.

1 Introduction

Monoidal languages [12] are a generalization of formal languages of words to formal languages
of string diagrams. String diagrams [16, 29] are a graphical representation of morphisms
in monoidal categories, introduced in Section 2. Monoidal categories can be considered
2-dimensional monoids [6]: just as monoids are categories with one object, in which the
morphisms are elements of the monoid, (strict) monoidal categories can also be defined as
2-categories with one object. Accordingly, monoidal languages are subsets of morphisms
in free monoidal categories, just as word languages are subsets of free monoids. Regular
monoidal languages are those specifiable by means of finitary grammars or automata. Our
paper [12] introduced these devices and examined the properties of their languages in the
case of single-sorted, planar monoidal categories. These include regular languages of words
and trees, as well as languages of planar string diagrams that are neither linear nor tree-like.

In this paper, motivated by concurrency theory, we extend this theory to coloured props:
multi-sorted monoidal categories with symmetries (Section 2). The resulting theory of
symmetric monoidal languages (Section 3) captures languages of diagrams having multiple
colours of string and in which strings may cross, permitting non-planar diagrams. In terms
of concurrency, colours represent different runtimes, or threads of execution.

Indeed, in Section 4 we show that Mazurkiewicz trace languages [21] are exactly symmetric
monoidal languages over alphabets of a particular shape called monoidal distributed alphabets.
In Section 5 we introduce automata for symmetric monoidal languages, defining the class of
regular symmetric monoidal languages. Then, in Section 6 we show that these are exactly
the asynchronous automata of Zielonka [32] when instantiated over monoidal distributed
alphabets. Finally, in Section 7 we use the algebra of symmetric premonoidal categories to
show how serialization of traces can be treated string-diagrammatically.

mailto:matthew.earnshaw@taltech.ee
https://ioc.ee/~matt
https://orcid.org/0000-0001-8236-2811
mailto:pawel.sobocinski@taltech.ee
https://ioc.ee/~pawel
https://orcid.org/0000-0002-7992-9685

2 String Diagrammatic Trace Theory

1.1 Related work

Our previous work [12] introduced monoidal languages in the planar, single-sorted case; that
is, languages of morphisms in free pros. Similar languages of graphs were studied by Bossut
[5], but their underlying algebra was not made explicit. Here, we again leverage the algebraic
perspective, extending our theory to symmetric multi-sorted monoidal categories (props).

In the introduction to Joyal & Street’s foundational work on string diagrams for monoidal
categories [16], it is suggested that string diagrams have a connection to the heaps of Viennot
[30]. Heaps are known to be equivalent to Mazurkiewicz trace monoids (also known as
partially commutative monoids) [17], but a precise formulation of the suggested relation with
string diagrams has not appeared in the literature until now.

The notion of dependence graph [13] has also been used to give a topological presentation
of Mazurkiewicz traces. Our use of the algebra of monoidal categories, rather than graphs, has
various advantages. For example, we can apply our language theory for monoidal categories
to traces, and we see notions such as asynchronous automata arise naturally from this. It
also suggests generalizations of trace languages, in particular going beyond the case of atomic
actions (Remark 22). Finally, it brings our work into proximity with the semantics of Petri
nets and other formalisms for concurrency based on monoidal categories [2, 24].

2 Monoidal Graphs, Props and their String Diagrams

In this section we recall the basic definitions used in the following, including the specific
flavour of monoidal categories known as props [20], along with their string diagrams [16, 29].
Props can be presented by monoidal graphs, a kind of multi-input, multi-output graph.

▶ Definition 1. A monoidal graph G is a set BG of boxes, a set SG of sorts, and functions
s, t : BG ⇒ SG

∗ to the free monoid over SG, giving source and target boundaries of each box.

The alphabets of monoidal languages will be finite monoidal graphs: those in which BG
and SG are both finite sets. In fact, since we are interested in finite state machines over
finite alphabets, we will work exclusively with finite monoidal graphs. Diagrammatically,
a (finite) monoidal graph can be pictured as a collection of boxes, labelled by elements of
BG with strings entering on the left and exiting on the right, labelled by sorts given by the
source and target functions. For example, the following depicts the monoidal graph G with
BG = {γ, γ′}, SG = {A, B}, s(γ) = AB, t(γ) = ABA, s(γ′) = A, t(γ′) = BB:

γ γ'A
B A

B
A

A
B
B

Sorts of a monoidal graph are sometimes called colours, since we could equally use
different colours of string to represent different sorts, and we shall do so in places below.
For a box γ ∈ BG we call s(γ) and t(γ) the arity and coarity of γ, respectively, and write
γ : s(γ) → t(γ). We will also call γ considered together with its arity and coarity a generator.

Monoidal graphs are generating data for monoidal categories. Recall that a strict monoidal
category is a category C, equipped with a functor ⊗ : C × C → C (the monoidal product) and
a unit object I ∈ C, such that ⊗ is associative and unital. A strict monoidal category is
symmetric if there is a natural family of symmetry morphisms σA,B : A ⊗ B → B ⊗ A, for
each pair of sorts, satisfying σB,A ◦ σA,B = 1A⊗B. The monoidal product turns the sets of
objects and morphisms in C into monoids. A prop is a symmetric strict monoidal category

M. Earnshaw and P. Sobociński 3

whose monoid of objects is a free monoid.1 While the above data can be intimidating to the
non-expert, the free prop F G on a monoidal graph G can be described in an intuitive and
straightforward way: its arrows are the string diagrams generated by G.

▶ Definition 2. The free prop F G on a monoidal graph G has monoid of objects S∗
G and

morphisms string diagrams inductively defined as follows:

(,)∈S𝒢 ∈S𝒢 α ∈ B𝒢

...... α

...... d1
... ...d3

... d1
...d3

... d2
......... d1

...... d1

... d2

...

Left to right: the empty diagram is a diagram; for every sort, the string on that sort is a
diagram; for every pair of sorts, the symmetric braiding is a diagram; the diagram for every
generator α is a diagram; for any two diagrams their vertical juxtaposition is a diagram;
and for any two diagrams with matching right and left boundaries, the diagram obtained by
joining the matching wires is a diagram (their composition). The monoidal product is given
on objects by concatenation, on diagrams by juxtaposition, and the unit is the empty word.

The idea is simple: we treat generators like circuit components, and we have a supply of
wires (identity morphisms). We also have the ability to cross wires, without tangling them;
we do not distinguish over-crossings from under-crossings. A string diagram is then just any
(open) circuit that we can build. This notation is sound and complete: an equation between
morphisms of strict monoidal categories follows from their axioms if and only if it holds
between string diagrams up to planar isotopy [16]. Working with string diagrams rather than
the usual term syntax for morphisms is more intuitive, and leads to shorter proofs as the
structural equations hold automatically: for example, interchange of morphisms (Figure 1,
left), unbraiding of symmetries (centre), and sliding of morphisms past symmetries (right).

α

β

α

β
= = =

α

α

Figure 1 These pairs of string diagrams are equal, reflecting the functoriality of ⊗ (interchange),
inverses of symmetries, and naturality of symmetries, respectively.

▶ Definition 3. A morphism of monoidal graphs φ : H → G is given by functions Bφ : BH →
BG and Sφ : SH → SG compatible with source and target functions: S∗

φ ◦ s = s ◦ Bφ and
S∗

φ ◦ t = t ◦ Bφ, where S∗
φ is the unique monoid homomorphism determined by Sφ.

Morphisms of monoidal graphs freely generate morphisms of props: strict monoidal
functors preserving colours. This extends to an adjunction F ⊣ U between the categories
of monoidal graphs and props, where U takes the underlying monoidal graph of a prop [16].

Monoidal categories have been applied to the study of both computing and physical
processes [8, 9, 18, 25]. In these contexts, the monoidal product represents parallel composition
of processes, and interchange reflects the independence of processes running in parallel. This
is the main feature of monoidal categories that we will leverage in our representation of traces
(Section 4). The use of multi-sorted props will allow fine-grained control of interchange.

1 Some literature takes prop to mean that the monoid of objects is generated by a single object (and so
isomorphic to N), using the term coloured prop for the general case above.

4 String Diagrammatic Trace Theory

3 Symmetric Monoidal Languages

Our paper [12] treated the case of languages, grammars and automata over single-sorted pros
(strict monoidal categories without symmetries), corresponding to languages of planar string
diagrams with one string colour. In this section we introduce the multi-sorted (or “coloured”)
symmetric monoidal languages, which will be needed in the following to extend monoidal
language theory to trace theory. In Section 5 we introduce the corresponding automata.

▶ Definition 4. Let Γ be a finite monoidal graph. A symmetric monoidal language over Γ is
a set of morphisms in the free prop F Γ over Γ.

A morphism of finite directed graphs G → Σ, where Σ is a graph with one vertex, amounts
to a labelling of the edges of G by edges of Σ. This is the starting point of Walters’ definition
of regular grammar [31], which inspires the following definition:

▶ Definition 5. A regular monoidal grammar is a morphism of finite monoidal graphs.

For a regular monoidal grammar M → Γ, the monoidal graph Γ is the alphabet, and the
generators of M , with their labelling by φ, correspond to production rules: see Example 8
below. In the classical setting of word languages, a morphism of finite directed graphs G → Σ
determines a regular language over Σ once we specify initial and final state vertices in G.
In a regular monoidal grammar M → Γ, the “vertices” of M are words over VM , leading
to various natural choices of boundary condition. In our previous paper [12], we took the
empty word, giving languages of scalar string diagrams (i.e. no “dangling wires”): this neatly
generalizes tree grammars. More generally, one can take initial and final regular languages of
states over VΓ, as considered by Bossut [5].

The free prop construction can be used to concisely describe the symmetric monoidal
language of a regular monoidal grammar, defining the class of regular symmetric monoidal
languages.

▶ Definition 6. Let (φ : M → Γ, I, F) be a regular monoidal grammar equipped with regular
languages I, F ⊆ V ∗

M . This determines a symmetric monoidal language by taking the image
of the set of morphisms

⋃
i∈I,f∈F F M(i, f) under F φ, giving a set of morphisms in F Γ.

The languages arising in this way are defined to be the regular symmetric monoidal languages.

In this paper, we will only need the case where I, F consist of single words. The slogan
for the general case is that 2-dimensional regular languages have 1-dimensional regular
boundaries. In Section 5, we will see that regular symmetric monoidal languages may
equivalently be specified by non-deterministic monoidal automata.

We illustrate these definitions with some pedagogical toy examples. In the remaining
sections of this paper, we turn to our extended application in concurrency theory, and we
shall see that Mazurkiewicz trace languages are a natural example.

▶ Example 7. Let φ : M → Γ be the regular monoidal grammar where M and Γ have a
single sort (•) and no boxes, with Sφ(•) = •, and initial and final states n ∈ V ∗

M
∼= N. Then

the symmetric monoidal language of this grammar is the set of permutations of n wires:
morphisms consisting only of symmetries and identities.

Props have been used to give syntax and semantics for various kinds of signal flow graph
and circuit diagrams [1, 3, 4]. Intuitively, props are well suited for this purpose since wires
may freely cross in a circuit.

M. Earnshaw and P. Sobociński 5

▶ Example 8. We give a regular monoidal grammar for the syntax of (open) circuits with
n ⩾ 0 capacitors in series with a single voltage source (Figure 2). The alphabet Γ has a
single sort, and boxes four circuit components (Figure 2, left). The monoidal graph M has
four sorts {S, A, B, C} and four boxes s : S → AB, c : A → A, v : B → C, s′ : AC → S. Sφ

maps the four sorts to the single sort of Γ, and Bφ maps each box to a circuit component.
We can draw the grammar φ : M → Γ in a single diagram by drawing the graph for M but
replacing each box b with its image under the grammar morphism Bφ(b) (Figure 2, centre).
The initial and final languages are the single state {S}. Intuitively, the symmetric monoidal
language determined by the grammar is all of the string diagrams S → S that can be built
using the “sorted” boxes of Γ, then forgetting the sorts.

A

B

A

CB C

A A

S S

Figure 2 (Left) The alphabet Γ, giving syntax for circuits. (Centre) A regular monoidal grammar
over Γ. (Right) An element of the regular symmetric monoidal language determined by this grammar.

▶ Remark 9. A regular monoidal grammar determines not only a regular symmetric monoidal
language, but also a language in any algebraic structure generated by monoidal graphs,
including planar monoidal categories (treated in [12]), and premonoidal categories (which
we will use in Section 7). This is analogous to the way in which a finite labelled directed
graph may generate both a subset of a free monoid, but also a subset of a free group, by
freely adding inverses to the graph. Moreover, many properties of planar regular monoidal
languages such as their closure properties proved in [12] only use grammars, and hence the
same proofs work for languages in these other algebras.

4 Mazurkiewicz Trace Languages as Symmetric Monoidal Languages

The theory of Mazurkiewicz traces [10, 21, 23] provides a simple but powerful model of
concurrent systems. Traces are a generalization of words in which specified pairs of letters
can commute. If we think of letters as corresponding to atomic actions, then commuting
letters reflect the independence of those particular actions and so their possible concurrent
execution: ab is observationally indistinguishable from ba if a and b are independent.

In this section, we show that trace languages are symmetric monoidal languages over
monoidal graphs of a particular form that we call monoidal distributed alphabets. In Section
6 we turn to a well-known class of automata, the asynchronous automata [32]. These accept
exactly the recognizable trace languages, and we show that these automata are precisely
symmetric monoidal automata over monoidal distributed alphabets.

4.1 Independence and distribution
We recall some definitions from Mazurkiewicz trace theory, before recasting them in terms of
monoidal languages. Fix a finite set Σ, an alphabet thought of as a set of atomic actions.

▶ Definition 10. An independence relation on Σ is a symmetric, irreflexive relation I. The
induced dependence relation, DI is the complement of I.

6 String Diagrammatic Trace Theory

▶ Definition 11. For I an independence relation, let ≡I be the least congruence on Σ∗ such
that ∀a, b: (a, b) ∈ I =⇒ ab ≡I ba. The quotient monoid T (Σ, I) := Σ∗/≡I is the trace
monoid.

▶ Definition 12. A (Mazurkiewicz) trace language over (Σ, I) is a subset of the trace monoid
T (Σ, I).

An element of T (Σ, I) or trace over (Σ, I) is thus an equivalence class of words up to
commutation of independent letters. A trace language may be thought of as the set of
possible observations of a concurrent system’s behaviour, in which independent letters stand
for actions which may occur concurrently. Independence relations correspond to distributions:

▶ Definition 13 ([23]). A distribution of an alphabet Σ is a finite tuple of non-empty alphabets
(Σ1, ..., Σk) such that

⋃k
i=1 Σi = Σ.

▶ Proposition 14 ([23]). A distribution of Σ corresponds to a function loc : Σ → P+({1, ..., k}) :
σ 7→ {i | σ ∈ Σi}.

Such a function gives the set of “locations” of each action σ ∈ Σ. In terms of concurrency,
we can consider this to be a set of memory locations, threads of execution, or runtimes in
which σ participates. In particular, every action has a non-empty set of locations.

A well-known construction [23] allows us to move between independence relations and
distributions: locations correspond to maximal cliques in the graph of the dependency relation.
We recall this construction in the proof of Proposition 15, which refines this correspondence.

Let IndΣ be the poset of independence relations on Σ, with order the inclusion of relations.
Similarly, define a preorder DistΣ on distributions by (Σ1, ..., Σp) ⩽ (Σ′

1, ..., Σ′
q) iff for each

pair of distinct elements a, b ∈ Σ, if there exists 1 ⩽ j ⩽ q such that Σ′
j contains both a and

b, then there exists an Σi containing both a and b. Finally, quotient this preorder by taking
distributions to be equal up to permutation.

▶ Proposition 15. There is a Galois insertion IndΣ ↪→ DistΣ.

Proof. We construct an injective monotone function i : IndΣ → DistΣ. Let an independence
relation I over Σ be given, with induced dependence relation DI . Construct the undirected
dependency graph: vertices are elements of Σ and there is an edge (a, b) for every (a, b) ∈ DI .
Choose an ordering of maximal cliques of DI , and define a distributed alphabet by taking
Σi to be the elements of Σ in the maximal clique i. Different orderings give the same
distribution up to permutation, and so the same element of DistΣ. This is injective since
distinct independence relations induce distinct dependency graphs. It is monotone since if
I ⊆ I ′ then the dependency graph DI is at least as connected as DI′ , so if a, b both belong
to a maximal clique of DI′ then they will both belong to a maximal clique of DI .

We construct a monotone function r : DistΣ → IndΣ. Let (Σ1, ..., Σk) be a distribution.
Define a relation I by (a, b) ∈ I ⇐⇒ loc(a) ∩ loc(b) = ∅. This is irreflexive and symmetric,
and so an independence relation. r is also clearly well-defined and monotone. Finally it is
easy to check that r ◦ i : IndΣ → IndΣ is the identity.

◀

Put otherwise, though the same independence relation may be induced by many different
distributions, independence relations correspond bijectively with the distributions in the
image of i ◦ r, that is, the distributions obtained via the maximal clique construction.

M. Earnshaw and P. Sobociński 7

4.2 Symmetric monoidal languages over monoidal distributed alphabets
We now turn to the interpretation of these notions in terms of symmetric monoidal languages.
A distribution can be seen as a monoidal graph in which sorts are the locations (runtimes).

▶ Definition 16. A monoidal distributed alphabet is a finite monoidal graph Γ with the
following properties:

Γ has set of sorts a finite ordinal VΓ = {1 < 2 < ... < k} for k ⩾ 1,
sorts i ∈ VΓ appear in order in the sources and targets of each generator γ ∈ EΓ,
each sort i ∈ VΓ appears at most once in each source and target,
for each generator γ ∈ EΓ, the sources and targets are non-empty and equal: s(γ) = t(γ).

In brief, every generator in the alphabet is equipped with some set of runtimes, which
serve as its source and target, and the runtimes are conserved. Figure 3 gives an example.

γ ε
β

δ

α

Figure 3 An example of a monoidal distributed alphabet. For example, δ and β are independent
but γ and α are not. We use colours for clarity, here blue = 1 < red = 2 < green = 3.

This gives us a way of representing distributions as monoidal graphs and vice-versa, if the
graph is a monoidal distributed alphabet. Following Proposition 14, we will use loc(... γ ...)
to mean the arity (= coarity) of a generator ... γ Since we choose a finite ordinal for the
sorts, we have that:

▶ Proposition 17. Distributed alphabets are in bijection with monoidal distributed alphabets.

Since the ordering of the runtimes is ultimately not relevant to the structure of a trace,
we should allow them to freely cross each other in our string diagrams: this is precisely what
is enabled by taking the symmetric monoidal languages over these alphabets. We also need
each runtime to appear once in each element of these languages, so we take the boundaries
to be 1 ⊗ ... ⊗ n, which we will write as 1...

n
.

▶ Definition 18. A monoidal trace language is a symmetric monoidal language of the form
L ⊆ F Γ

(1...
n
,

1...
n

)
where Γ is a monoidal distributed alphabet.

Figure 4 gives an example of an element in a monoidal trace language over the monoidal
distributed alphabet in Figure 3. We call such morphisms monoidal traces, and indeed we
shall see below that they are exactly Mazurkiewicz traces. The corresponding string diagram
gives an intuitive representation of traces as topological objects.

α
δ

ε

β

γ

Figure 4 An example of a monoidal trace. β is independent of α and γ, but not δ or ϵ. Thus
αγβδε and βαγδε are two possible serializations of this trace, corresponding to sliding β past α and
γ in the string diagram. We use colours for sorts, blue = 1 < red = 2 < green = 3.

8 String Diagrammatic Trace Theory

We now show that monoidal trace languages correspond precisely to Mazurkiewicz trace
languages (Theorem 21), by establishing an isomorphism of monoids between trace monoids
and monoids of string diagrams generated by monoidal distributed alphabets. Fix a monoidal
distributed alphabet Γ. Recall that endomorphism hom-sets in a category are monoids under
composition, and that hom-set F Γ

(1...
n
,

1...
n

)
has elements string diagrams 1...

n
→ 1...

n
over Γ.

▶ Lemma 19. The hom-set F Γ
(1...

n
,

1...
n

)
admits the following presentation as a monoid:

Generators: For each ... γ ... ∈ Γ, the string diagram N(γ) : 1 ⊗ ... ⊗ n → 1 ⊗ ... ⊗ n

built from symmetries, followed by ... γ ... tensored with identities, followed by the inverse
symmetry. See Figure 5 for an example.
Equations: N(α) # N(β) = N(β) # N(α) ⇐⇒ loc(... α ...) ∩ loc(... β ...) = ∅.

Proof. We construct an isomorphism between the monoids. Let s ∈ F Γ
(1...

n
,

1...
n

)
be a string

diagram. We can use interchange (Figure 1) to impose a linear order of generators from
left to right in the diagram, e.g. ... γ1 ..., ..., ... γn

.... This is called putting s in general
position, by perturbing generators at the same horizontal position [16]. We then split the
string diagram into a sequence of slices, each containing one generator. For a slice with
right (or left) boundary

k1...
kn

, we can use the permutation
k1...
kn

→ 1...
n

followed by its inverse (or
vice-versa) to finally obtain s as a sequence N(γ1) # ... # N(γn). Any other possible sequence
of generators is obtainable by repeatedly interchanging generators: this is possible if and
only if their locations are disjoint. Consequently, this defines a function from F Γ

(1...
n
,

1...
n

)
to

the monoid presented above. Given that, as argued above, the slicing construction is unique
up to interchanging independent generators, this defines a homomorphism. Conversely, given
a generator N(γ) in the presentation, we map this to the same string diagram in F Γ

(1...
n
,

1...
n

)
.

Again, it follows from interchange that this extends to a homomorphism, inverse to that
above. ◀

γ
1

2

3

4

5

1

2

3

4

5

1 1

4

5

4

5

2

3

2

3

Figure 5 An example of a generator N(γ) as in Lemma 19.

We now show that trace monoids are isomorphic to the endomorphism monoids F Γ
(1...

n
,

1...
n

)
.

▶ Lemma 20. Let I be an independence relation on an alphabet Σ, and Γ the monoidal
distributed alphabet induced by the corresponding distribution (Proposition 17). Then there is
an isomorphism of monoids T (Σ, I) ∼= F Γ

(1...
n
,

1...
n

)
.

Proof. We use the presentation of the endomorphism monoid given in Lemma 19. Define
a homomorphism α : F Γ

(1...
n
,

1...
n

)
→ T (Σ, I) by mapping generators N(γ) 7→ [γ]. Let

N(γ) # N(γ′) = N(γ′) # N(γ), then it follows [γγ′] = [γ′γ] in T (Σ, I), since the former holds
iff loc(γ) ∩ loc(γ′) = ∅, and so this extends to a homomorphism. Define a homomorphism
β : T (Σ, I) → F Γ

(1...
n
,

1...
n

)
by mapping generators [γ] 7→ N(γ). [γγ′] = [γ′γ] holds iff

loc(γ) ∩ loc(γ′) = ∅, iff loc(... γ ...) ∩ loc(... γ′ ...) = ∅, iff N(γ) # N(γ′) = N(γ′) # N(γ).
Finally it is clear that α and β are inverses, and so witness an isomorphism of monoids.

M. Earnshaw and P. Sobociński 9

◀

The following theorem is now immediate: given a monoidal trace language L ⊆ F Γ
(1...

n
,

1...
n

)
we obtain a trace language L′ ⊆ T (Σ, I) using the isomorphism, and vice-versa:

▶ Theorem 21. Monoidal trace languages are exactly Mazurkiewicz trace languages.

Lemma 20 also shows that composition of traces corresponds simply to concatenation
of the corresponding monoidal traces. Diagrams like Figure 4 are commonplace in the
trace literature [11, 32]. Theorem 21 gives a formal basis for these diagrams as elements of
symmetric monoidal languages.
▶ Remark 22. The idea of monoidal categories with a runtime is made precise by string
diagrams for the effectful categories of Román [28]. Free props over monoidal distributed
alphabets, considered as monoidal categories with multiple runtimes suggest a further
generalization of effectful categories, sketched as a setting for concurrency by Jeffrey [14,
Section 9.4]. We return to this in Section 7, where effectful (premonoidal) categories will be
used to equip a trace language with a new runtime that enforces a strict ordering of events.

5 Symmetric Monoidal Automata

Monoidal automata give an alternative specification of the class of regular monoidal languages:
they are analogues of finite-state automata in which transitions have multiple inputs and
multiple outputs. Our paper [12] introduced monoidal automata for single-sorted, planar
monoidal languages. However, the same data specifies an acceptor for single-sorted symmetric
monoidal languages, if we inductively extend to props, rather than planar monoidal categories.

In this section we introduce monoidal automata over multi-sorted monoidal graphs and
show how these recognize (multi-sorted) symmetric monoidal languages. In Section 6, we
will see that the asynchronous automata of Zielonka [32] are a natural class of symmetric
monoidal automata: those over monoidal distributed alphabets.

▶ Definition 23. A non-deterministic monoidal semi-automaton is:
an input alphabet, given by a finite monoidal graph Γ,
an family of non-empty, finite state sets {Qc}c∈SΓ indexed by the sorts of Γ,
for each γ : c1...cn → c′

1...c′
m in Γ, a transition function ∆γ :

∏n
i=0 Qci → P(

∏m
j=0 Qc′

j
).

As noted in Section 3, there are several candidates for a notion of initial/final state. In
the following, we take initial and final words i, f over

∏
Qc. A monoidal semi-automaton

equipped with initial and final words turns it into a (non-deterministic) monoidal automaton.
For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ → Rel, the

inductive extension of the transition structure from letters to words. We can similarly extend
monoidal automata to string diagrams. First, we define the codomain prop, RelΓ,Q:

▶ Definition 24. For a family of sets {Qc}c∈SΓ indexed by the sorts of Γ then RelΓ,Q is the
prop with:

set of objects V ∗
Γ ,

morphisms c1...cn → c′
1...c′

m functions
∏n

i=1 Qci
→ P(

∏m
j=1 Qcj

),
composition is the usual composition of relations, i.e. f ◦ g := µ ◦ P(g) ◦ f , where µ is
the canonical map from sets of subsets to subsets,
⊗ is given on objects by concatenation,
and on morphisms f :

⊗
i ci →

⊗
j c′

j and g :
⊗

k dk →
⊗

l d′
l by f ⊗ g := ∇ ◦ (f × g),

where ∇ sends pairs of subsets to their cartesian product,

10 String Diagrammatic Trace Theory

symmetries σ : c1c2 → c2c1 are functions Qc1 × Qc2 → P(Qc2 × Qc1) : (q, q′) 7→ {(q′, q)}.

Note that a non-deterministic monoidal semi-automaton amounts to a morphism of
monoidal graphs Γ → U RelΓ,Q. The adjunction F ⊣ U implies that there is a unique
extension to a strict monoidal functor F Γ → RelΓ,Q, which we call a non-deterministic
symmetric monoidal semi-automaton. This functor maps a string diagram to a relation.
When this relation relates the initial word to the final word, the string diagram is accepted:

▶ Definition 25. Let ∆ : F Γ → RelΓ,Q be a non-deterministic monoidal automaton with
initial and final states i, f ∈ V ∗

Γ . Then the symmetric monoidal language accepted by ∆ is
the set of morphisms L (∆) := {α ∈ F Γ | f ∈ ∆(α)(i)}.

Intuitively, a run of a symmetric monoidal automaton starts with a word of states, whose
subwords are modified by transitions corresponding to generators. Identity wires do not
modify the states, and symmetries permute adjacent states.

▶ Observation 26. There is an evident correspondence between non-deterministic monoidal
automata and regular monoidal grammars. The graphical representation of a grammar (such
as Figure 2) makes this most clear: it can also be thought of as the “transition graph” of a
non-deterministic monoidal automaton.

▶ Remark 27. We can further abstract our definition of monoidal automaton by noting that
RelΓ,Q is a sub-prop of the Kleisli category of the powerset monad P, and that this monad
could be replaced by another commutative monad [27, Corollary 4.3]. For example, replacing
P with the maybe monad, we obtain deterministic monoidal automata.

6 Asynchronous Automata as Symmetric Monoidal Automata

Asynchronous automata were introduced by Zielonka [32] as a true-concurrent operational
model of recognizable trace languages, a well-behaved subclass of trace languages analogous
to regular languages. In this section we show they are precisely symmetric monoidal automata
over monoidal distributed alphabets, which leads to the following theorem:

▶ Theorem 28. Recognizable trace languages are exactly regular symmetric monoidal lan-
guages over monoidal distributed alphabets.

We recall the definition of asynchronous automata, before turning to monoidal automata.

▶ Definition 29 (Asynchronous automaton [32]). Let (Σ1, ..., Σk) be a distribution of an
alphabet Σ. For each 1 ⩽ i ⩽ k, let Qi be a non-empty finite set of states, and for each
σ ∈ Σ take a transition relation ∆σ :

∏
i∈loc(σ) Qi → P(

∏
i∈loc(σ) Qi). This defines a global

transition relation on the set Q :=
∏k

i=1 Qi as follows:
(q1, ..., qk) σ−→ (q′

1, ...q′
k) ⇐⇒ qi = q′

i for i /∈ loc(σ) and (q′
i1

, ..., q′
ij

) ∈ ∆σ(qi1 , ..., qij)
where {i1, ..., ij} ∈ loc(σ). Finally let −→

i ∈ Q, F ⊆ Q be initial and final words of states.

The global transition relation for σ leaves unchanged those states at locations in the
complement of loc(σ), and otherwise acts according to the local transition ∆σ. An asyn-
chronous automaton has a language over Σ given by the extension of the transition relation
to words. Moreover, asynchronous automata have a language of Mazurkiewicz traces over
the distribution of Σ: a trace in T (Σ, I) is accepted when all of its serializations are accepted,
which happens when one of its serializations is accepted [32, p. 109]. Recognizable trace
languages are defined algebraically as those whose syntactic congruence is of finite index [32].
Zielonka’s theorem says that they also have an operational characterization:

M. Earnshaw and P. Sobociński 11

▶ Theorem 30 (Zielonka [32]). Asynchronous automata accept precisely the recognizable
trace languages.

Definition 29 closely resembles that of symmetric monoidal automata. Indeed, asyn-
chronous automata are precisely symmetric monoidal automata over monoidal distributed
alphabets:

▶ Proposition 31. For an asynchronous automaton A, there is a symmetric monoidal
automaton over a monoidal distributed alphabet with the same trace language, and vice-versa.

Proof. An asynchronous automaton with multiple final state words can be normalized to a
single final state word in the usual way by introducing a new final state word and modifying
transitions appropriately. Then a symmetric monoidal automaton can be constructed by
taking the monoidal distributed alphabet associated to the distribution of Σ (Proposition 17),
the same transition relations, initial and final state words. We show that the languages
coincide. Let w ∈ L (A), and consider the corresponding trace [w]. Using Lemma 20, we
can produce the corresponding monoidal trace. By construction, this is accepted by the
symmetric monoidal automaton defined above. The converse is analogous. ◀

As a corollary, we can invoke Theorem 30 to obtain Theorem 28. In contrast to asyn-
chronous automata, the constructed symmetric monoidal automaton directly accepts traces
qua string diagrams, rather than a language of words corresponding to a trace language.

▶ Observation 32. Jesi, Pighizzini, and Sabadini [15] introduced probabilistic asynchronous
automata. Initial and final states, and transition relations are replaced by initial and final
distributions, and stochastic transitions. These are precisely what are obtained if the powerset
monad in our definition of non-deterministic monoidal automaton (Remark 27) is replaced
with the distribution monad [26], whose Kleisli category has morphisms stochastic matrices.

7 Serialization via Premonoidal Categories

Trace theorists often consider trace languages to be word languages with the property of trace-
closure with respect to an independence relation [19]: if u ∈ L and u ≡I v then v ∈ L. These
languages arise as preimages of trace languages along the quotient map qΣ,I : Σ∗ → T (Σ, I).
For L ⊆ T (Σ, I) a trace language, q−1

Σ,I(L) ⊆ Σ∗ is its flattening or serialization.
In this section we show that the serialization of monoidal trace languages can be carried out

using the algebra and string diagrams of symmetric premonoidal categories. In premonoidal
categories are like monoidal categories, except interchange (Figure 1) does not hold in general.
The free (symmetric) premonoidal category on a monoidal graph was described using string
diagrams by Román [28]. The idea is simple: the string diagrams are the same as for props,
but an extra string (the “runtime”) threads through each generator, preventing interchange.
Figure 6 shows two premonoidal morphisms • ⊗ • → • ⊗ • that are not equal:

≠
α

β

α

β

Figure 6 In the free premonoidal category over a monoidal graph, generators are augmented by
a string on a new object called the runtime (dashed red). This prevents interchange (cf. Figure 1).

12 String Diagrammatic Trace Theory

In Appendix A, we explain in more detail the construction of the free symmetric premon-
oidal category FpΓ on a monoidal graph Γ using string diagrams. In particular, the runtime
string appears only once in each string diagram, reflecting that premonoidal categories do
not have a tensor product on morphisms. The endomorphism monoid FpΓ

(1...
n
,

1...
n

)
is now the

free monoid over the boxes of Γ, since the runtime prevents interchange:

▶ Proposition 33. Let Γ be a monoidal distributed alphabet. Then FpΓ
(1...

n
,

1...
n

)
∼= B∗

Γ, where
BΓ is the set of boxes of Γ.

Proof. (Sketch) By augmenting the generators of Γ with a new runtime, we create a mon-
oidal distributed alphabet in which every generator depends on every other, that is, the
independence relation is empty. Thus the corresponding trace monoid is simply B∗

Γ. From
here, we can follow the idea of Lemma 20. ◀

We can define a morphism of monoids qΓ : FpΓ
(1...

n
,

1...
n

)
→ F Γ

(1...
n
,

1...
n

)
by presenting

FpΓ
(1...

n
,

1...
n

)
as in Lemma 19, and defining qΓ on generators by erasing the runtime string.

Theorem 34 then follows immediately from the definitions along with Lemma 20 and Propos-
ition 33:

▶ Theorem 34. For every alphabet BΓ, the following square of monoid homomorphisms
commutes, where q is the quotient monoid homomorphism.

B∗
Γ τ(BΓ, I)

FpΓ
(1...

n
,

1...
n

)
F Γ

(1...
n
,

1...
n

)∼=

q

∼=

qΓ

As a result, the preimage of a monoidal trace language under the morphism qΓ corresponds
to the serialization of that language.

8 Conclusion

There are several directions in which our theory could be developed. A semi-independence
relation drops symmetry from an independence relation: it is simply an irreflexive relation.
This gives rise to the theory of semicommutations [7], in which directed commutations may
occur e.g. ab → ba, but not vice-versa. This allows for a more fine-grained specification
of concurrency. In terms of monoidal languages, it suggests consideration of monoidal
distributed alphabets in which the sources and targets of generators may differ.

As noted in Remark 22, our treatment of trace languages suggests a generalization of
the notion of effectful category [28] (which include premonoidal categories), in which there
multiple runtimes. This would enable a semantics for concurrent systems in which we can
consider not only atomic actions, but also actions with input and output types. We plan to
pursue this axiomatically in future work.

Mazurkiewicz originally introduced traces to give semantics to Petri nets, and showed
that this semantics is compositional with respect to synchronization of traces [21]. Petri nets
have been given semantics in monoidal categories [2, 22], and so the precise relationship of
our monoidal formulation of traces to Petri nets remains to be worked out. In particular,
this would involve understanding trace synchronization in terms of monoidal categories.

Finally, proofs of Zielonka’s theorem (Theorem 30, see [32] for details) remain highly
technical, despite several simplifications since Zielonka’s version. Investigation of whether the
algebra of monoidal categories might yield further simplifications is an intriguing direction.

M. Earnshaw and P. Sobociński 13

References
1 John C. Baez, Brandon Coya, and Franciscus Rebro. Props in network theory. Theory and

Applications of Categories, 33(25):727–783, 2018.
2 John C Baez, Fabrizio Genovese, Jade Master, and Michael Shulman. Categories of nets. In

2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13.
IEEE, 2021.

3 Guillaume Boisseau and Pawel Sobocinski. String diagrammatic electrical circuit theory.
Electronic Proceedings in Theoretical Computer Science, 372:178–191, 2022.

4 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Full abstraction for signal flow graphs.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, page 515–526, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2676726.2676993.

5 Francis Bossut, Max Dauchet, and Bruno Warin. A Kleene theorem for a class of planar
acyclic graphs. Inf. Comput., 117:251–265, 03 1995. doi:10.1006/inco.1995.1043.

6 Albert Burroni. Higher-dimensional word problems with applications to equational logic.
Theoretical Computer Science, 115(1):43–62, 1993. URL: https://www.sciencedirect.com/
science/article/pii/030439759390054W, doi:10.1016/0304-3975(93)90054-W.

7 M Clerbout, M Latteux, and Y Roos. Semi-commutations. In V Diekert and G Rozenberg,
editors, The Book of Traces. World Scientific, 1995.

8 Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathematical theory of resources.
Information and Computation, 250:59–86, 2016. Quantum Physics and Logic. doi:10.1016/j.
ic.2016.02.008.

9 Bob Coecke and Aleks Kissinger. Picturing quantum processes : a first course in quantum
theory and diagrammatic reasoning. Cambridge University Press, 2017.

10 V Diekert and G Rozenberg. The Book of Traces. World Scientific, 1995. doi:10.1142/2563.
11 Volker Diekert and Anca Muscholl. On distributed monitoring of asynchronous systems. In

Luke Ong and Ruy de Queiroz, editors, Logic, Language, Information and Computation, pages
70–84, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

12 Matthew Earnshaw and Paweł Sobociński. Regular Monoidal Languages. In Stefan Szeider,
Robert Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 44:1–44:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2022.44.

13 Hoogeboom H J and G Rozenberg. Dependence graphs. In V Diekert and G Rozenberg,
editors, The Book of Traces. World Scientific, 1995.

14 Alan Jeffrey. Premonoidal categories and a graphical view of programs. Preprint, 1998.
15 S. Jesi, G. Pighizzini, and N. Sabadini. Probabilistic asynchronous automata. Mathematical

systems theory, 29(1):5–31, Feb 1996. doi:10.1007/BF01201811.
16 André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics,

88(1):55–112, 1991. doi:10.1016/0001-8708(91)90003-P.
17 C. Krattenthaler. The theory of heaps and the Cartier-Foata monoid. In P. Cartier and

D. Foata, editors, Commutation and Rearrangements. European Mathematical Information
Service, 2006.

18 Elena Di Lavore, Giovanni de Felice, and Mario Román. Coinductive streams in monoidal
categories, 2022. arXiv:2212.14494.

19 Hendrik Maarand and Tarmo Uustalu. Reordering derivatives of trace closures of regular
languages. In 30th International Conference on Concurrency Theory (CONCUR 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

20 Saunders MacLane. Categorical algebra. Bulletin of the American Mathematical Society,
71(1):40 – 106, 1965.

https://doi.org/10.1145/2676726.2676993
https://doi.org/10.1006/inco.1995.1043
https://www.sciencedirect.com/science/article/pii/030439759390054W
https://www.sciencedirect.com/science/article/pii/030439759390054W
https://doi.org/10.1016/0304-3975(93)90054-W
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1016/j.ic.2016.02.008
https://doi.org/10.1142/2563
https://doi.org/10.4230/LIPIcs.MFCS.2022.44
https://doi.org/10.1007/BF01201811
https://doi.org/10.1016/0001-8708(91)90003-P
https://arxiv.org/abs/2212.14494

14 String Diagrammatic Trace Theory

21 Antoni Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, pages 285–363, Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

22 José Meseguer and Ugo Montanari. Petri nets are monoids. Information and Computation,
88(2):105–155, 1990. doi:10.1016/0890-5401(90)90013-8.

23 Madhavan Mukund. Automata on distributed alphabets. In Modern Applications of Automata
Theory, pages 257–288. World Scientific, 2012. doi:10.1142/9789814271059_0009.

24 Chad Nester. Concurrent Process Histories and Resource Transducers. Logical Methods in
Computer Science, Volume 19, Issue 1, January 2023. doi:10.46298/lmcs-19(1:7)2023.

25 Dusko Pavlovic. Monoidal computer I: Basic computability by string diagrams. Information
and Computation, 226:94–116, 2013. Special Issue: Information Security as a Resource.
doi:10.1016/j.ic.2013.03.007.

26 Paolo Perrone. Distribution monad (nlab entry), 2019. https://ncatlab.org/nlab/show/
distribution+monad, Last accessed 2023-03-13.

27 John Power and Edmund Robinson. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science, 7(5), 1997. doi:10.1017/S0960129597002375.

28 Mario Román. Promonads and string diagrams for effectful categories. In ACT ’22: Applied
Category Theory, Glasgow, United Kingdom, 18 - 22 July, 2022, 2022. arXiv:2205.07664,
doi:10.48550/arXiv.2205.07664.

29 P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke, editor,
New Structures for Physics, pages 289–355. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. doi:10.1007/978-3-642-12821-9_4.

30 Gérard Xavier Viennot. Heaps of pieces, I : Basic definitions and combinatorial lemmas. In
Gilbert Labelle and Pierre Leroux, editors, Combinatoire énumérative, pages 321–350, Berlin,
Heidelberg, 1986. Springer Berlin Heidelberg.

31 R.F.C. Walters. A note on context-free languages. Journal of Pure and Applied Algebra,
62(2):199–203, 1989. doi:10.1016/0022-4049(89)90151-5.

32 Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO - Theoretical Informatics
and Applications - Informatique Théorique et Applications, 21(2):99–135, 1987.

A Symmetric Strict Premonoidal Categories and Functors

We recall the definitions of (symmetric) strict premonoidal categories and their functors. For
more details, see the papers [27, 28].

▶ Definition 35. A strict premonoidal category is a category C equipped with:
for each pair of objects A, B ∈ C an object A ⊗ B,
for each object A ∈ C a functor A ◁ − whose action on objects sends B to A ⊗ B,
for each object A ∈ C a functor − ▷ A whose action on objects sends B to B ⊗ A,
a unit object I,
for each object A ∈ C, strict unitality I ⊗ A = A = A ⊗ I,
for each triple of objects A, B, C ∈ C, strict associativity A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

The families of functors A◁−, −▷A are called the whiskerings with A: in a premonoidal
category we do not have a tensor product of morphisms in general, but we can put an identity
on either side of a morphism. A morphism f : A → B ∈ C is central if for every morphism
g : C → D, (B◁g)◦ (f ▷C) = (f ▷C)◦ (A◁g), in other words, f is central if it interchanges
with every other morphism g.

▶ Definition 36. A strict premonoidal category is symmetric if it is further equipped with
a natural isomorphism whose components cA,B : A ⊗ B → B ⊗ A are central and such that
cB,A ◦ cA,B = 1A⊗B.

https://doi.org/10.1016/0890-5401(90)90013-8
https://doi.org/10.1142/9789814271059_0009
https://doi.org/10.46298/lmcs-19(1:7)2023
https://doi.org/10.1016/j.ic.2013.03.007
https://ncatlab.org/nlab/show/distribution+monad
https://ncatlab.org/nlab/show/distribution+monad
https://doi.org/10.1017/S0960129597002375
https://arxiv.org/abs/2205.07664
https://doi.org/10.48550/arXiv.2205.07664
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1016/0022-4049(89)90151-5

M. Earnshaw and P. Sobociński 15

▶ Definition 37. A strict premonoidal functor F : C → D is a functor sending central
morphisms to central morphisms and such that F (IC) = ID, F (X ⊗ Y) = F (X) ⊗ F (Y).

A.1 String Diagrams for Premonoidal Categories
We recall the construction of the free symmetric strict premonoidal category over a monoidal
graph. This is a special case of the construction of free effectful categories in [28, Section 2.3].

We first define the runtime monoidal graph over a monoidal graph, which augments the
generators with a new wire:

▶ Definition 38. Let G be a monoidal graph. Let R be a sort disjoint from SG. The runtime
monoidal graph GR has sorts SG + {R} and for each generator γ : S1...Sn → S′

1...S′
m in G a

generator γ : RS1...Sn → RS′
1...S′

m.

Graphically we can depict GR as in Figure 7 (right):

α β α β

Figure 7 Left: A monoidal graph G. Right: the associated runtime monoidal graph GR, where
the new sort R is drawn as a dashed string.

▶ Definition 39. The symmetric runtime monoidal category is the free prop F GR on GR.

▶ Theorem 40. The free symmetric strict premonoidal category FpG on a monoidal graph
G has set of objects SG and a morphism S1 ⊗ ... ⊗ Sn → S′

1 ⊗ ... ⊗ S′
m is a morphism

R ⊗ S1 ⊗ ... ⊗ Sn → R ⊗ S′
1 ⊗ ... ⊗ S′

m in the symmetric runtime monoidal category.

Proof. The proof follows [28, Theorem 2.14], in the case where V is empty, and taking
instead the free symmetric strict monoidal category. ◀

In particular note that we no longer have a tensor product of morphisms in FpG, since
the runtime must appear only once in each domain and codomain, but we do have whiskerings
for each object.

Consequently the string diagrams for morphisms A → B in FpG are just morphisms
R ⊗ A → R ⊗ B in the runtime monoidal category [28, Corollary 2.15].

	1 Introduction
	1.1 Related work

	2 Monoidal Graphs, Props and their String Diagrams
	3 Symmetric Monoidal Languages
	4 Mazurkiewicz Trace Languages as Symmetric Monoidal Languages
	4.1 Independence and distribution
	4.2 Symmetric monoidal languages over monoidal distributed alphabets

	5 Symmetric Monoidal Automata
	6 Asynchronous Automata as Symmetric Monoidal Automata
	7 Serialization via Premonoidal Categories
	8 Conclusion
	A Symmetric Strict Premonoidal Categories and Functors
	A.1 String Diagrams for Premonoidal Categories

