
Regular Monoidal Languages
Matthew Earnshaw !Ï �

Department of Software Science, Tallinn University of Technology, Estonia

Paweł Sobociński !Ï �

Department of Software Science, Tallinn University of Technology, Estonia

Abstract
We introduce regular languages of morphisms in free monoidal categories, with their associated
grammars and automata. These subsume the classical theory of regular languages of words and
trees, but also open up a much wider class of languages over string diagrams. We use the algebra
of monoidal and cartesian restriction categories to investigate the properties of regular monoidal
languages, and provide sufficient conditions for their recognizability by deterministic monoidal
automata.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation → Categorical semantics

Keywords and phrases monoidal categories, string diagrams, formal language theory, cartesian
restriction categories

Funding This research was supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19- 0001). The second author was additionally supported by the Estonian
Research Council grant PRG1210.

Acknowledgements We would like to thank Ed Morehouse for extensive discussions concerning this
work, and Tobias Heindel for discussion of his erstwhile project that partially inspired ours.

1 Introduction

Classical formal language theory has been extended to various kinds of algebraic structures,
such as infinite words, rational sequences, trees, countable linear orders, graphs of bounded
tree width, etc. In recent years, the essential unity of the field has been better understood
[1, 16]. Such structures can often be seen as algebras for monads on the category of sets,
and sufficient conditions exist [1] for formal language theory to extend to their algebras.

In this paper, we make a first step into a programme of extending language theory to
higher-dimensional algebraic structures. Here we make the step from monoids to 2-monoids,
better known as monoidal categories.

We introduce a categorial framework for reasoning about languages of morphisms in strict
monoidal categories – including their associated grammars and automata. We show how
these include classical and tree automata, but also open up a wilder world of string diagram
languages. By investigating the morphisms in monoidal categories from the perspective of
language theory, this work contributes to research into the computational manipulation of
string diagrams, and so their usage in industrial strength applications.

2 Related work

Bossut [2] studied rational languages of planar acyclic graphs and proved a Kleene theorem
for a class of such languages. Bossut’s graph languages feature initial and final states, whereas
our languages consist of scalar morphisms, which more neatly generalizes the theory of regular
string and tree languages. Bossut introduces a notion of automaton for these languages, but
these lack a state machine denotation – being more similar to our grammars.

ar
X

iv
:2

20
7.

00
52

6v
1

 [
cs

.F
L

]
 1

 J
ul

 2
02

2

mailto:matthew.earnshaw@taltech.ee
https://ioc.ee/~matt
https://orcid.org/0000-0001-8236-2811
mailto:pawel.sobocinski@taltech.ee
https://ioc.ee/~pawel
https://orcid.org/0000-0002-7992-9685

M. Earnshaw and P. Sobociński 2

In [10], Heindel recasts Bossut’s approach using monoidal categories. Unfortunately
the purported Myhill-Nerode result was incorrect, due to a flawed definition of syntactic
congruence. We rectify this in Section 5, but a Myhill-Nerode type theorem remains open.

Zamdzhiev [18] introduced context-free languages of string diagrams using the string
graph representation of string diagrams and the machinery of context-free graph grammars.
In contrast, our approach does not require an intermediate representation of string diagrams
as graphs: we work directly with morphisms in monoidal categories. This allows us to use
the algebra of monoidal categories to reason about properties of monoidal languages.

Winfree et al. [13] use DNA self-assembly to simulate cellular automata and Wang tile
models of computation. The kinds of two-dimensional languages obtained in this way can be
seen quite naturally as regular monoidal languages, as illustrated in Example 12.

Walters’ note [17] on regular and context-free grammars served as a starting point for
our definition of regular monoidal grammar. Rosenthal [12], developing some of the ideas
of Walters, defined automata as relational presheaves, which is similar in spirit to our
functorial definition of monoidal automata. The framework of Colcombet and Petrişan
[5] considering automata as functors is also close in spirit to our definition of monoidal
automata. However, all of these papers are directed towards questions involving classical
one-dimensional languages, rather than languages of diagrams as in the present paper.

Fahrenberg et al. [7] investigated languages of higher-dimensonal automata, a well-
established model of concurrency. We might expect that the investigations of the present
paper correspond to a detailed study of a particular low-dimensional case of such languages,
but the precise correspondence between these notions is unclear.

3 Regular monoidal grammars and regular monoidal languages

A monoidal grammar is a finite specification for the construction of string diagrams: i.e.
morphisms in free monoidal categories (more specifically, free pros). We introduce regular
monoidal grammars, an analogue of classical (right-) regular grammars, and their equivalent
representation as non-deterministic monoidal automata. We begin by recalling the notion of
monoidal graph and how they present free monoidal categories.

3.1 Monoidal graphs and free pros
▶ Definition 1. A monoidal graph G consists of sets EG , VG and functions dom, cod : EG ⇒
V ∗

G where V ∗
G is the underlying set of the free monoid. The elements of EG are called

generators, and for a generator γ ∈ EG, dom(γ), cod(γ) are the domain, codomain (resp.)
types of γ.

Diagrammatically, a monoidal graph can be pictured as a collection of boxes, labelled by
elements of EG with wires entering on the left and exiting on the right, labelled by types
given by the functions dom, cod. For example, the following depicts the monoidal graph G
with EG = {γ, γ′}, VG = {A, B}, dom(γ) = AB, cod(γ) = ABA, dom(γ′) = A, cod(γ′) = BB:

A
B

γ
A
B
A

A γ′ B
B

Given that we are interested in finite state machines over finite alphabets, we shall work
exclusively with finite monoidal graphs, i.e. those in which EG and VG are both finite sets.

▶ Definition 2. A morphism Ψ : G′ → G of monoidal graphs is a pair of functions VΨ :
VG → VG′ , EΨ : EG → EG′ such that dom # V ∗

Ψ = EΨ # dom and cod # V ∗
Ψ = EΨ # cod.

M. Earnshaw and P. Sobociński 3

Monoidal graphs and their morphisms form a category MonGraph. Recall that a (coloured)
pro is a strict monoidal category whose monoid of objects is free (on the set of “colours”).
There is a category Pro with objects pros and morphisms strict monoidal functors whose
action on objects is determined by a function between their sets of colours. We call these pro
morphisms. (Coloured) props are pros that are also symmetric (strict) monoidal categories.

Pros (and props) are monadic over monoidal graphs: the forgetful functor U : Pro →
MonGraph has a left adjoint F : MonGraph → Pro, and Pro is equivalent to the category of
algebras for the induced monad on MonGraph (see [8, §2.3]). F sends a monoidal graph G to
a pro FG whose set of objects is V ∗

G and whose morphisms are string diagrams (see Appendix
A).

3.2 Monoidal languages and regular monoidal grammars
Classically, a language over an alphabet Σ is a subset of the free monoid Σ∗. A monoidal
language is defined similarly, replacing free monoids with free pros over a monoidal alphabet:

▶ Definition 3. A monoidal alphabet Γ is a finite monoidal graph where VΓ is a singleton.

For a generator γ of a monoidal alphabet, we refer to dom(γ), cod(γ) as the arity, coarity
(resp.) of γ, writing ar(γ), coar(γ). Such generators are drawn with “untyped” wires.

▶ Definition 4. A monoidal language L over a monoidal alphabet Γ is a subset L ⊆ FΓ(0, 0)
of morphisms with arity and coarity 0 in the free pro generated by Γ.

▶ Remark 5. The restriction to arity and coarity zero (i.e. scalar) morphisms may appear
arbitrary. However, we will see in Section 4 that this captures and explains the classical
definitions of finite-state automata over words and trees. It also leads to more concise
definitions in our theory.

Regular monoidal grammars specify monoidal languages that are an analogue of classical
regular languages. They can be obtained by taking Walters’ [17] definition of regular language
and replacing the adjunction between reflexive graphs and categories with that between
monoidal graphs and pros. As shown in Section 4, they include the classical definitions of
regular tree and word languages as grammars over monoidal alphabets of a particular shape.

▶ Definition 6. A regular monoidal grammar is a morphism of finite monoidal graphs
Ψ : M → Γ where Γ is a monoidal alphabet.

Intuitively, a regular monoidal grammar is a labelling of the edges of M by generators in
Γ. Indeed, the vertex function VΨ : VM → {•} is unique, so the grammar is determined by
its edge function EΨ : EM → EΓ, sending edges to their labels. In Section 3.4 we show that
this data determines a transition system with states words w ∈ V ∗

M.
▶ Remark 7. Every regular monoidal grammar determines a pro morphism between free pros,
FΨ : FM → FΓ, which we may also refer to as a regular monoidal grammar.

For any string diagram s ∈ FΓ over an alphabet Γ, we can think of the set of string
diagrams FΨ−1(s) as a set of possible “parsings” of that diagram.
▶ Remark 8. We represent regular monoidal grammars diagrammatically by drawing the
monoidal graph M as above, but labelling each box e ∈ EM with EΨ(e). The resulting
diagram is not in general a diagram of a monoidal graph, since it may contain boxes with
the same label but different domain or codomain types. Examples are given below.

M. Earnshaw and P. Sobociński 4

3.3 Regular monoidal languages
A regular monoidal grammar determines a monoidal language as follows:

▶ Definition 9. Given a regular monoidal grammar Ψ : M → Γ, the image under FΨ of the
endo-hom-set of the monoidal unit ε in FM is a monoidal language FΨ[FM(ε, ε)] ⊆ FΓ(0, 0).

We call the class of languages determined by regular monoidal grammars the regular
monoidal languages. We shall see that they are precisely the languages accepted by non-
deterministic monoidal automata (Section 3.4). The basic idea is that a “word” is a scalar
string diagram, i.e. one with no “dangling wires”. The language of a monoidal grammar
then consists of those scalar string diagrams that can be given a parsing. Parsings can be
visually explained using the graphical notation for grammars (Remark 8). A morphism in
the language defined by a grammar is any string diagram that can be built using the “typed”
building blocks, such that there are no dangling wires, and then erasing the types on the
wires. The following examples of regular monoidal grammars illustrate this idea:

▶ Example 10 (Balanced parentheses). Recall that the Dyck language, the language of
balanced parentheses, is a paradigmatic example of a non-regular word language. However,
we can recognize balanced parentheses using the regular monoidal grammar shown below left.
An example of a morphism in the language defined by this grammar is shown on the right.

A (A
A
B

) A
A
B

A (
()

)

This illustrates how regular monoidal grammars permit unbounded concurrency. Here, as one
scans from left to right, the (unbounded) size of the internal boundary of a string diagram
keeps track of the number of open left parentheses.

▶ Example 11 (Brick walls). A variant on the “brick wall” language introduced by [2] is
given by the following grammar (left below). An example of a morphism in the language
defined by this grammar is shown on the right.

H

V

H

V

V

H

H

V

In Section 3.5 we will see how this language of “brick walls” allows us to construct the
following example as an intersection of two languages:

▶ Example 12 (Sierpiński gasket). In [13], self-assembly of DNA tiles was used to realize the
behaviour of a cellular automaton that computes the Sierpiński gasket fractal, based on the
computation of the XOR gate. [13] implicitly depicts a monoidal grammar, and so Sierpiński
gaskets of arbitrary iteration depth (e.g. right below) are in fact the monoidal language over
this grammar (left below, where we use colours for the alphabet):

H1

V1

H1

V1

V0

H0

H0

V0

V0

H0

H0

V1

V1

H1

H1

V0

V1

H1

V1

H1

M. Earnshaw and P. Sobociński 5

▶ Example 13. We define a grammar (left below) that will serve as a running counterexample
in Section 7, as it defines a language that cannot be deterministically recognized. The
connected string diagrams in this language are exactly two (right below).

δ
α

β

A

A

B

C
γ

A

A

B

C
γ

A

A

C

B
γ δ

α

β
γ δ

α

β

▶ Remark 14. If the monoidal graph M has no edges whose domain is ε and no edges whose
codomain is ε, a regular monoidal grammar Ψ : M → Γ will define a language containing
only the identity on the monoidal unit, i.e. the empty string diagram (denoted). In fact,
every monoidal language contains the empty string diagram.

3.4 Non-deterministic monoidal automata
Recall that a non-deterministic finite automaton (NFA) is given by a finite set Q of states,
an initial state i ∈ Q, a set of final states F ⊆ Q, and for each a ∈ Σ, a function Q

∆a−−→ P(Q).
Non-deterministic monoidal automata do not have initial and final states; string diagrams
are simply accepted or rejected depending on their shape. In Section 4, we will see that
initial and final states derive from this definition, when the alphabet is of a particular form.

▶ Definition 15. A non-deterministic monoidal automaton ∆ = (Q, ∆Γ) over a monoidal
alphabet Γ is given by a finite set Q, together with a set of transition functions indexed by
generators ∆Γ = {Qar(γ) ∆γ−−→ P(Qcoar(γ))}γ∈EΓ .

For classical NFAs, the assignment a 7→ ∆a extends uniquely to a functor Σ∗ → Rel,
the inductive extension of the transition structure from letters to words. We define the
inductive extension of monoidal automata from generators to string diagrams. First recall
the definition of the endomorphism pro of an object in a monoidal category:

▶ Definition 16. Let C be a monoidal category, and Q an object of C. The endomorphism pro
of Q, CQ, has natural numbers as objects, hom-sets CQ(n, m) := C(Qn, Qm), composition and
identities as in C. The monoidal product is addition on objects, and as in C on morphisms.

The codomains of our inductive extension will be endomorphism pros of finite sets Q in
Rel, considered as the Kleisli category of the powerset monad P. Since P is a commutative
monad (with respect to the cartesian product of sets, with PX × PY → P(X × Y) given by
the product of subsets), the following lemma gives us the monoidal structure on Rel:

▶ Lemma 17 ([11], Corollary 4.3). Let T be a commutative monad on a symmetric monoidal
category C. Then the Kleisli category Kl(T) has a canonical monoidal structure, which is
given on objects by the monoidal product in C, and on morphisms f : X → TA, g : Y → TB

by X ⊗ Y
f⊗g−−−→ TA ⊗ TB

∇−→ T (A ⊗ B), where ∇ is given by the commutativity of T .

▶ Remark 18. The maybe monad (–)⊥ is also commutative, so its Kleisli category, equivalent
to the category Par of sets and partial functions, also has a canonical monoidal structure, and
for each set Q there is an endomorphism pro ParQ. We will come back to ParQ in Section 6.

Now we can define the inductive extension of a non-deterministic monoidal automaton:

▶ Observation 19. The assignment of generators to transition functions γ 7→ ∆γ in Defin-
ition 15 determines a morphism of monoidal graphs Γ → |RelQ|. Such morphisms are in

M. Earnshaw and P. Sobociński 6

bijection with pro morphisms ∆ : FΓ → RelQ. We will also refer to the inductive extension
∆ as a non-deterministic monoidal automaton, and sometimes write ∆α for the relation
∆(α : n → m).

A scalar string diagram is mapped to one of the two possible nullary relations {•} →
P({•}), which represent accepting or rejecting computations, and thus can be used to define
the language of the automaton:

▶ Definition 20. Let ∆ : FΓ → RelQ be a non-deterministic monoidal automaton. Then the
monoidal language accepted by ∆ is L(∆) := {α ∈ FΓ(0, 0) | ∆α(•) = {•}}.

There is an evident correspondence between regular monoidal grammars and non-
deterministic monoidal automata. The graphical representation of a grammar makes this
most clear: it can also be thought of as the “transition graph” of a non-deterministic monoidal
automaton. More explicitly we have:

▶ Proposition 21. Given a regular monoidal grammar Ψ : M → Γ, define a monoidal
automaton with Q = VM, w(∆γ)w′ ⇐⇒ ∃σ ∈ E−1

Ψ (γ) such that dom(σ) = w, cod(σ) = w′.
Conversely given a monoidal automaton (Q, ∆Γ), define a regular monoidal grammar with
VM = Q and take an edge w → w′ over γ ⇐⇒ w(∆γ)w′. This correspondence of grammars
and automata preserves the recognized language.

▶ Remark 22. In automata theory it is often convenient to consider automata with ε-
transitions, or word-labelled transitions more generally. As monoidal grammars, these
correspond to arbitrary functors FM → FΓ, that is (by the adjunction U ⊣ F), to morphisms
of finite monoidal graphs M → UFΓ. The corresponding generalization of monoidal automata
requires considering RelQ as a monoidal 2-category with 2-cells the inclusions. Identity on
objects, strict monoidal lax 2-functors FΓ → RelQ (where FΓ is considered as equipped with
identity 2-cells), then give the refined notion of monoidal automaton. Such a lax 2-functor
need no longer send the identity on n wires to the identity relation on Qn, but merely to a
relation that includes the identity; this corresponds to allowing silent transitions. Similarly,
lax preservation of composition corresponds to allowing “diagram-labelled” transitions.

3.5 Closure properties of regular monoidal languages
We record some closure properties of regular monoidal languages.

▶ Lemma 23 (Closure under union). Let L and L′ be regular monoidal languages over Γ.
Then L ∪ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be given by the regular monoidal grammars Ψ : M → Γ, Ψ′ : M′ → Γ
respectively. Define the grammar Ψ + Ψ′ : M + M′ → Γ, where EM+M′ := EM +
EM′ , VM+M′ := VM + VM′ , and EΨ+Ψ′ := [Ψ, Ψ′] (the copairing of Ψ and Ψ′). Graphically,
this is just taking the disjoint union of two grammars, and it is clear that the language
defined in this way is the union of the languages defined by the two grammars. ◀

▶ Lemma 24 (Closure under intersection). Let L and L′ be regular monoidal languages over
Γ. Then L ∩ L′ is a regular monoidal language over Γ.

Proof. Let L and L′ be recognized by non-deterministic automata ∆ : FΓ → RelQ, ∆′ :
FΓ → RelQ′ respectively. Consider the product automaton ∆ × ∆′ : FΓ → RelQ×Q′ defined
by (∆ × ∆′)α := (∆α × ∆′

α) # ∇, where ∇ is the monoidal multiplication given by the
commutativity of the powerset monad. Then α is accepted by ∆×∆′ just when it is accepted
by both, so L(∆ × ∆′) = L ∩ L′. ◀

M. Earnshaw and P. Sobociński 7

▶ Remark 25. The Sierpiński gasket language (Example 12) is the intersection of the brick
wall language (Example 11) and an “XOR gate” language: this explains the origin of the
states in the grammar shown in Example 12.

▶ Lemma 26 (Closure under monoidal product and factors). Let L be a regular monoidal
language. Then α, β ∈ L ⇐⇒ α ⊗ β ∈ L.

Proof. Let ∆ : FΓ → RelQ be an automaton accepting both α and β. Since ∆ is a strict
monoidal functor, ∆(α ⊗ β) = ∆(α) ⊗ ∆(β), so we must have ∆(α ⊗ β)(•) = {•}, and
conversely. ◀

▶ Lemma 27 (Closure under images of alphabets). Let L a be regular monoidal language over
Γ, and Γ h−→ Γ′ be a morphism of monoidal alphabets. Then (Fh)L is a regular monoidal
language over Γ′.

Proof. Let L be given by the regular monoidal grammar Ψ : M → Γ, that is L =
FΨ[FM(ε, ε)]. Consider the grammar given by the composite Ψ # h : M → Γ′. Since
F is a functor we have: F(Ψ # h)[FM(ε, ε)] = (FΨ #Fh)[FM(ε, ε)] = (Fh)L, thus Ψ # h is a
grammar for (Fh)L. ◀

▶ Lemma 28 (Closure under preimages of alphabets). Let L a regular monoidal language
over Γ, and Γ′ h−→ Γ be a morphism of monoidal alphabets. Then the inverse image of L,
(Fh)−1(L) is a regular monoidal language over Γ′.

Proof. Let ∆ : FΓ → RelQ be an automaton recognizing L. Consider the automaton given
by the composite Fh # ∆ : FΓ′ → RelQ. We have L(Fh # ∆) = (Fh)−1(L(∆)) = (Fh)−1(L),
so the inverse image of L is regular. ◀

Closure under complement is often held to be an important criterion for what should count
as a recognizable language. Indeed, for the abstract monadic second order logic introduced
in [1], it is a theorem that the class of recognizable languages relative to a monad on Set is
closed under complement. However, given that every monoidal language contains the empty
string diagram, we obviously have that:

▶ Observation 29. Regular monoidal languages are not closed under complement.

This suggests that there is no obvious account of regular monoidal languages in terms of
monadic second order logic. On the other hand, there is no reason we should expect even the
general account of monadic second order logic given in [1] to extend to monoidal categories,
since these are not algebras for a monad on Set. Moreover, taking inspiration from classical
examples in Section 4, one could also refine what is meant by complement, for instance
focussing on the set of non-empty connected scalar diagrams – see below for more details.

4 Regular word and tree languages as regular monoidal languages

Classical non-deterministic finite-state automata and tree automata can be seen as non-
deterministic monoidal automata over alphabets of a particular shape.

To make the correspondence precise, in the following we restrict monoidal languages to
their connected string diagrams. Strictly speaking, the language of a monoidal automaton
always contains only the empty diagram or is countably infinite, because if α is accepted by
the automaton, so are arbitrary finite monoidal products α ⊗ · · · ⊗ α. However, it is of course
possible for a monoidal language to consist of a finite number of connected string diagrams.

M. Earnshaw and P. Sobociński 8

From another perspective, without restricting to connected components, we can say that
the monoidal automata corresponding to finite-state and tree automata have the power of an
unbounded number of such classical automata running in parallel.

4.1 Finite-state automata
▶ Definition 30. A word monoidal alphabet is a monoidal alphabet having only generators of
arity and coarity 1, σ , along with a single “start” generator of arity 0 and coarity
1, and “end” generator of arity 1 and coarity 0.

▶ Observation 31. Non-deterministic monoidal automata over word monoidal alphabets
correspond to classical NFAs.

Let an NFA A = (Q, Σ, ∆, i, F) be given. We build a monoidal automaton as follows. Form the
monoidal alphabet Σ′ by starting with generators , and adding generators σ for
each σ ∈ Σ. For each σ , take the transition function ∆σ := ∆(σ, –) : Q → P(Q).
For take the transition function Q → P(Q0) to be the characteristic function of F ⊆ Q,
sending elements of F to {•} and to ∅ otherwise, and for take the function Q0 → P(Q)
to pick out the singleton {i}. This defines a monoidal automaton A′ := (Q, ∆′

Σ′), and a
simple induction shows that L(A) = L(A′), if one restricts to connected string diagrams.

Conversely, the data of a monoidal automaton over a word monoidal alphabet corresponds
to the data of an NFA, the only difference being that the transition function associated
to picks out a set of initial states {•} → P(Q). We can always “normalize” such an
automaton into an equivalent NFA with one initial state (see [14, §2.3.1]). This shows how
NFA initial and final states are captured by this particular shape of monoidal alphabet.

4.2 Tree automata
Recall that non-deterministic finite tree automata come in two flavours, bottom-up and
top-down, depending on whether they process a tree starting at the leaves or at the root,
respectively. A non-deterministic bottom-up finite tree automaton is given by a finite set of
states Q, a “ranked” alphabet (Σ, r : Σ → N), a set of final states F ⊆ Q, and for each σ ∈ Σ
a transition function ∆σ : Qr(σ) → P(Q). A non-deterministic top-down tree automaton,
instead, has a set of initial states I ⊆ Q and transition functions ∆σ : Q → P(Qr(σ)). We
can recover these as non-deterministic monoidal automata over tree monoidal alphabets:

▶ Definition 32. A top-down tree monoidal alphabet is a monoidal alphabet having only
generators of arity 1 (and arbitrary coarities ⩾ 0), σ ... , along with a single “root”
generator . Analogously, a bottom-up tree monoidal alphabet is a monoidal alphabet
having only generators of coarity 1 (and arbitrary arities ⩾ 0), σ... , along with a single
“root” generator .

▶ Observation 33. Bottom-up tree automata are exactly non-deterministic monoidal auto-
mata over bottom-up tree monoidal alphabets, and likewise for top-down tree automata.

The idea is similar to that sketched above for NFAs. For example, consider the following
graph of a monoidal automaton over a bottom-up tree monoidal alphabet, recognizing trees
corresponding to terms of the inductive type of lists of boolean values (a list may be empty,
[], or be a boolean value “consed” onto a list via ::).

::
ft [] L LVV

L
V

L

M. Earnshaw and P. Sobociński 9

Intuitively, the connected scalar string diagrams determined by this language are trees,
with leaves on the left, and the root on the right. Monoidal automata over top-down tree
monoidal alphabets have a similar form, but are mirrored horizontally, and thus morphisms
in the language have the root on the left, and leaves on the right, and monoidal automata
read the morphism starting at the root.

5 The syntactic pro of a monoidal language

In this section we introduce the syntactic congruence on monoidal languages and the cor-
responding syntactic pro, by analogy with the syntactic congruence on classical regular
languages and their associated syntactic monoid. In Section 7.2 we will give an algebraic
property of the syntactic pro sufficient for the language to be deterministically recognizable.

▶ Definition 34. A context of capacity (n, m), where n, m ⩾ 0, is a scalar string diagram
with a hole – as illustrated below – with zero or more additional wires exiting the first box
and entering the second (indicated by ellipses).

...

......α β}n m{

...

Given a context of capacity (n, m), we can fill the hole with a string diagram α : n → m.
Write C[α] for the resulting string diagram.

Note that the empty diagram is a context, the empty context. Contexts allow us to define
contextual equivalence of string diagrams:

▶ Definition 35 (Syntactic congruence). Given a monoidal language L ⊆ FΓ(0, 0) we define
its syntactic congruence ≡L as follows. Let α, β be morphisms in FΓ(n, m). Then α ≡L β

whenever C[α] ∈ L ⇐⇒ C[β] ∈ L, for all contexts C of capacity (n, m).

▶ Definition 36. The syntactic pro of a monoidal language L is the quotient pro FΓ/≡L.
The quotient functor SL : FΓ → FΓ/≡L is the syntactic morphism of L. See Appendix B for
the definition of quotient pro and quotient functor.

▶ Remark 37. The syntactic congruences for classical regular languages of words and trees
are also special cases of this congruence over word and tree monoidal alphabets.

▶ Lemma 38. L is the inverse image along the syntactic morphism of the equivalence class
of the empty diagram.

Proof. Let α ∈ L. Then α ≡L , since the empty diagram is in every language and if C

is a context of capacity (0, 0) distinguishing α and , then we have a contradiction by

Lemma 26. So α ∈ S−1
L (

[]
), and conversely. ◀

In the terminology of algebraic language theory, we say that the syntactic morphism
recognizes L. A full investigation of algebraic recognizability of monoidal languages is a topic
for future work. For now, we record the following lemma which is needed for Theorem 59:

▶ Lemma 39. If a monoidal language L is regular, then its syntactic pro FΓ/≡L is locally
finite (i.e. has finite hom-sets).

M. Earnshaw and P. Sobociński 10

Proof. It suffices to exhibit a full pro morphism into FΓ/≡L from a locally finite pro. Let L

be a regular monoidal language recognized by ∆ : FΓ → RelQ. ∆ induces a congruence ∼ on
FΓ defined by α ∼ β ⇐⇒ ∆(α) = ∆(β), which implies that FΓ/∼ is locally finite, since
RelQ is locally finite. Define the pro morphism FΓ/∼ → FΓ/≡L to be identity on objects
and [α]∼ 7→ [α]≡L

on morphisms. This is well-defined since if α ∼ β and C[α] ∈ L for some
context C, then by functoriality C[β] ∈ L. Clearly it is full, so FΓ/≡L is locally finite. ◀

6 Deterministic monoidal automata

Classically, the expressive equivalence of deterministic and non-deterministic finite-state
automata for string languages is well known, but already for trees, top-down deterministic
tree automata are less expressive than bottom-up deterministic tree automata. Therefore
we cannot expect to determinize non-deterministic monoidal automata. However, we have
already seen monoidal languages that are deterministically recognizable (Examples 10, 11,
12, interpreted as the transition relations of monoidal automata, are functional relations).
Here we introduce deterministic monoidal automata and show that their languages enjoy the
property of causal closure. In Section 7 we consider the question of determinizability.

▶ Definition 40. A deterministic monoidal automaton δ = (Q, δΓ) over a monoidal alphabet
Γ is given by a finite set Q, together with transition functions δΓ = {Qar(γ) δγ−→ Q

coar(γ)
⊥ }γ∈Γ.

Recall the definition of the pro ParQ from Remark 18. Then as in Observation 19, such
assignments γ 7→ δγ uniquely extend to pro morphisms δ : FΓ → ParQ, and we will also refer
to such pro morphisms as deterministic monoidal automata. δ maps scalar string diagrams to
one of the two functions Q0 → Q0

⊥, and we use this to define the language of the automaton:

▶ Definition 41. Let δ : FΓ → ParQ be a deterministic monoidal automaton. Then the
language accepted by δ is L(δ) := {α ∈ FΓ(0, 0) | δα(•) = •}.

We give a necessary condition for a monoidal language to be recognized by a deterministic
monoidal automaton. The idea is to generalize the characterization of top-down determinist-
ically recognizable tree languages as those that are closed under the operation of splitting a
tree language into the set of possible paths through the trees, and reconstituting trees by
grafting compatible paths [9]. For string diagrams, we call the analogue of paths through a
tree the causal histories of a diagram (Definition 46).

First, we briefly recall the machinery of (cartesian) restriction categories [3], that will be
necessary in the following. Restriction categories are an abstraction of the category of partial
functions, and provide us with a diagrammatic calculus for reasoning about determinization
of monoidal languages.

▶ Definition 42 ([4]). A cartesian restriction prop is a prop in which every object is equipped
with a commutative comonoid structure (with the counit depicted by , comultiplication by

, and symmetry by) that is coherent, and for which the comultiplication is natural
(see Appendix C for details).

▶ Definition 43. The free cartesian restriction prop on a monoidal graph M, denoted F↓M
is given by taking the free prop on the monoidal graph M extended with a comultiplication
and counit generator for every object in VM, and quotienting the morphisms by the structural
equations of cartesian restriction categories (Appendix C).

M. Earnshaw and P. Sobociński 11

▶ Remark 44. Par is the paradigmatic example of a cartesian restriction category, with on
X given by the relation X → {•, ⊥} sending every element to •, and given by the
diagonal relation. ParQ inherits this structure and so is a cartesian restriction prop. Therefore
deterministic monoidal automata (Q, δΓ) also have inductive extensions to morphisms of
cartesian restriction props, δ : F↓Γ → ParQ, and these have a obvious notion of associated
language, defined similarly to Definition 41. These are related by the following lemma, which
follows from the universal properties of FΓ and F↓Γ:

▶ Lemma 45. If (Q, δΓ) is a deterministic monoidal automaton, then δ factors through δ as
δ = HΓ # δ, where HΓ : FΓ → F↓Γ sends morphisms to their equivalence class in F↓Γ.

Recall that any restriction category is poset-enriched: f ⩽ g if f is “less defined” than g,
i.e. if f coincides with g on f ’s domain of definition. For the hom-set from the monoidal
unit to itself, we have f ⩽ g ⇐⇒ f ⊗ g = f . Now we can define causal histories:

▶ Definition 46. Let γ be a string diagram in FΓ(0, 0). We call a string diagram h in
F↓Γ(0, 0) a causal history of γ if HΓ(γ) ⩽ h in F↓Γ(0, 0). Let L ⊆ FΓ(0, 0) be a regular
monoidal language. The set of causal histories of L, denoted ch(L), is defined to be HΓ(L)↑,
the upwards closure of HΓ(L) in the poset F↓Γ(0, 0).

A causal history represents the possible causal influence of parts of a diagram on generators
appearing “later” in the diagram. For example, the following five string diagrams are causal
histories of the rightmost string diagram below (every diagram is a causal history of itself),
taken from the language introduced in Example 13:

γ δγ γ δ
β β

γ δ
α

γ δ
α

▶ Lemma 47. Let M = (Q, δΓ) be a deterministic monoidal automaton, with functors
δ : FΓ → ParQ, δ : F↓Γ → ParQ. Then if δ accepts γ, δ accepts all causal histories of γ.

Proof. Since δ = HΓ # δ, if δ accepts γ, then δ accepts HΓ(γ). Let h be a causal history of γ.
Then δ(HΓ(γ)) = δ(h ⊗ HΓ(γ)) = δ(h) ⊗ δ(HΓ(γ)). But then δ accepts h by Lemma 26. ◀

▶ Definition 48 (Causal closure of a language). Let L be a monoidal language over a monoidal
alphabet Γ. Let

⊗
ch(L) denote the closure of the set of causal histories of L under monoidal

product. Then the causal closure of L is H−1
Γ

⊗
ch(L). A monoidal language is causally

closed if it is equal to its causal closure.

To illustrate causal closure, consider the following figure, which shows part of the derivation
of a morphism in the causal closure of the language of Example 13:

γ δ
δ

δ

γ

α

α

αγ δ
α

γ δ
α

α==

The leftmost diagram depicts the monoidal product of two causal histories determined by
the counterexample language. By the equational theory of cartesian restriction categories

M. Earnshaw and P. Sobociński 12

(Appendix C), this is equal to the string diagrams in the center and on the right, where we
first apply the naturality of (for γ), then unitality (twice), then naturality of (for
δ). The rightmost form of the diagram exhibits this morphism as being in the image of HΓ,
and its preimage under HΓ is the same diagram in FΓ. Since this diagram is not in the
original language, the language is not causally closed.

▶ Theorem 49. If a monoidal language is recognized by a deterministic monoidal automaton,
then it is causally closed.

Proof. Let L be recognized by a deterministic monoidal automaton δ : FΓ → ParQ. We
have δ = HΓ # δ and from Lemma 47 that δ accepts causal histories of morphisms in L. Since
languages are closed under monoidal product (Lemma 26), then by definition of the causal
closure, δ must accept everything in the causal closure of L. ◀

7 Deterministically recognizable monoidal languages

Non-deterministic finite state automata for words and bottom-up trees can be determinized
via the well known powerset construction. However, top-down tree automata cannot be
determinized in general [9, §2.11], so general monoidal automata also cannot be determinized
(Observation 33). However, there are interesting examples of deterministically recognizable
monoidal languages that are not tree languages, such as the monoidal Dyck language (Example
10) and Sierpiński gaskets (Example 12), and it is an intriguing theoretical challenge to
characterize such languages.

In Section 7.1 we study a class of determinizable automata called convex automata. In
Section 7.2 we give a sufficient condition for a language to be deterministically recognizable.

7.1 Convex automata and the powerset construction
The classical powerset construction is given conceptually by composition with the functor
Rel → Set, right adjoint to the inclusion Set ↪→ Rel. As remarked above, we cannot hope
to obtain an analogue of this functor for monoidal automata. Thus we describe a suitable
subcategory of RelQ for which determinization is functorial, that of convex relations.

▶ Definition 50. A relation ∆ : Qn → P(Qm) is convex if there is a morphism ∆∗ such that
the following square commutes:

(PQ)n (PQ)m

P(Qn) P(Qm)

∆∗

∆#
∇ ∇

where ∆# is the Kleisli lift of ∆, and ∇ is the monoidal multiplication given by the
commutativity of the powerset monad.

▶ Observation 51. If ∆ is convex, the morphism ∆∗ is unique, since ∇ is a monomorphism.

▶ Example 52. The relation ∆γ : Q0 → P(Q4) induced by the grammar in Example 13 is not
convex, since (A, B, B, A) and (A, C, C, A), which we can think of as “convex combinations”
of the other state vectors, are not included in the image of the relation.

▶ Lemma 53. Convex relations determine a sub-pro CRelQ ↪→ RelQ.

M. Earnshaw and P. Sobociński 13

Proof. See Appendix D. ◀

▶ Definition 54. An automaton ∆ : FΓ → RelQ is convex if it factors through CRelQ.

The following lemma gives the powerset construction on convex automata. We use the
non-empty powerset P+ to avoid duplication of failure state (∅ in RelQ, but ⊥ in ParP+(Q)):

▶ Lemma 55. For each set Q there is a morphism of pros DQ : CRelQ → ParP+(Q) which is
identity on objects and acts as follows on morphisms:

∆α : Qn → P(Qm)

P+(Q)n ηn

−−→ (⊥P+(Q))n
∼=−→ P(Q)n ∆∗

α−−→ P(Q)m
∼=−→ (⊥P+(Q))m ∇−→ ⊥P+(Q)m

where ⊥ is the maybe monad, η is the unit of this monad, and ∇ is its monoidal
multiplication with respect to the cartesian product.

Proof. See Appendix D. ◀

Determinization of a convex automaton ∆ : FΓ → CRelQ is now just given by post-
composition with the functor DQ. We show that this preserves the language:

▶ Theorem 56. Determinization of convex automata preserves the accepted language: let
∆ : FΓ → CRelQ be a convex automaton, then L(∆) = L(∆ #DQ).

Proof. Let α ∈ L(∆), i.e. ∆α(•) = {•}. Then we must have ∆∗
α(•) = •, and so

(∆ #DQ)α(•) = •. Conversely let α ∈ LD(∆ #DQ), i.e. (∆ #DQ)α(•) = •. Then we
must have that ∆∗

α(•) = •, and so ∆α(•) = {•}, that is α ∈ L(∆). ◀

▶ Example 57. Non-deterministic monoidal automata over word monoidal alphabets (Defin-
ition 30) are convex: for a relation ∆ : Q → P(Q), ∆∗ is given by the Kleisli extension of ∆.
This reflects the well known determinizability of classical finite-state automata.

▶ Example 58. Similarly, non-deterministic monoidal automata over bottom-up tree mon-
oidal alphabets (Definition 32) are convex, with ∆∗ := ∇ # ∆#. For top-down tree monoidal
alphabets, the general obstruction to convexity (and thus determinizability) is seen as the
non-existence of a left inverse of ∇.

7.2 A sufficient condition for deterministic recognizability
▶ Theorem 59. If the syntactic pro of a regular monoidal language has the structure of
a cartesian restriction prop, then the language is recognizable by a deterministic monoidal
automaton.

Proof. Let L be a monoidal language such that FΓ/≡L has a cartesian restriction prop
structure. We exhibit a pro morphism FΓ/≡L

ϕ−→ ParQ such that FΓ SL−−→ FΓ/≡L
ϕ−→ ParQ is

a deterministic monoidal automaton accepting exactly L.
Let Q := FΓ/≡L(0, 1). By Lemma 39, this is a finite set. For m > 0 and [β] ∈

FΓ/≡L(n, m), define ϕ([β]) : n → m to be the following map from Qn → Qm
⊥ :

... ...

αₙ

...

α1 α1 α1

αn

β ...

...

...

αₙ

β

, ,

ϕ([β])((((↦

M. Earnshaw and P. Sobociński 14

When m = 0 (i.e. [β] has coarity 0), let ϕ([β])([α1], ..., [αn]) = •, if [(α1 ⊗ ... ⊗ αn) # β] =[]
, and ϕ([β])([α1], ..., [αn]) = ⊥ otherwise. The proof that this defines a morphism

of pros is an exercise in diagrammatic reasoning using the equational theory of cartesian
restriction categories and is left to Appendix D. To see that this automaton accepts exactly
L, let α ∈ L(SL # ϕ), then by definition we must have SL(α) =

[]
, and so α ∈ L (by

Lemma 38). Conversely let α ∈ L, then SL(α) =
[]

and by definition ϕ
([])

(•) = •,
so α ∈ L(SL # ϕ). Therefore SL # ϕ is a deterministic monoidal automaton recognizing L. ◀

▶ Example 60. A simple example is given by the language L of “bones” over the monoidal

alphabet Γ = { , }, having one connected component: . The syntactic pro of this

language has a cartesian restriction prop structure, with the counit given by the equivalence
class [], comultiplication by [], and symmetry by []. It is clear that FΓ/≡L(0, 1)
has one equivalence class, [], which becomes the state of the monoidal automaton. The
construction above then gives the obvious transition functions required for each generator.

8 Conclusion and future work

The most immediate open question is to determine necessary and sufficient conditions for
determinizability: causal closure is a promising candidate. Furthermore we would like to
understand the relation between convexity and Theorem 59. Classical topics in the theory
of regular languages such as a Myhill-Nerode theorem are also ripe for future investigation.
We also plan to investigate further applications of regular monoidal languages in computer
science, for example representing trace languages and look-ahead parsing.

Just as our definition of regular monoidal grammar was obtained from Walters’ definition
of regular grammar by replacing the adjunction Cat → Graph with the adjunction Pro →
MonGraph, we might consider other adjunctions and their corresponding notion of grammar.
In the first instance, our theory should smoothly generalize to languages in free props, but
perhaps also other (higher) categorical structures.

We plan to investigate a notion of context-free monoidal language, using a similar algebraic
approach to this paper. One candidate for the algebra of such languages, inspired again by
[17], are (monoidal) multicategories of n-hole contexts (in the sense of Definition 34).

References
1 Mikołaj Bojańczyk, Bartek Klin, and Julian Salamanca. Monadic monadic second order logic.

2022. arXiv:arXiv:2201.09969.
2 Francis Bossut, Max Dauchet, and Bruno Warin. A Kleene theorem for a class of planar

acyclic graphs. Inf. Comput., 117:251–265, 03 1995. doi:10.1006/inco.1995.1043.
3 J.R.B. Cockett and Stephen Lack. Restriction categories I: categories of partial maps.

Theoretical Computer Science, 270(1):223–259, 2002. doi:https://doi.org/10.1016/
S0304-3975(00)00382-0.

4 Robin Cockett and Stephen Lack. Restriction categories III: colimits, partial limits and
extensivity. Mathematical Structures in Computer Science, 17(4):775–817, 2007. doi:10.1017/
S0960129507006056.

5 Thomas Colcombet and Daniela Petrişan. Automata Minimization: a Functorial Approach.
Logical Methods in Computer Science, Volume 16, Issue 1, March 2020. URL: https://lmcs.
episciences.org/6213, doi:10.23638/LMCS-16(1:32)2020.

http://arxiv.org/abs/arXiv:2201.09969
https://doi.org/10.1006/inco.1995.1043
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1017/S0960129507006056
https://doi.org/10.1017/S0960129507006056
https://lmcs.episciences.org/6213
https://lmcs.episciences.org/6213
https://doi.org/10.23638/LMCS-16(1:32)2020

M. Earnshaw and P. Sobociński 15

6 Ivan Di Liberti, Fosco Loregian, Chad Nester, and Paweł Sobociński. Functorial semantics for
partial theories. Proceedings of the ACM on Programming Languages, 5(POPL):1–28, 2021.

7 Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Languages of
higher-dimensional automata. Mathematical Structures in Computer Science, 31(5):575–613,
2021. doi:10.1017/S0960129521000293.

8 Richard Garner and Tom Hirschowitz. Shapely monads and analytic functors. Journal of
Logic and Computation, 28(1):33–83, 11 2017. doi:10.1093/logcom/exx029.

9 Ferenc Gécseg and Magnus Steinby. Tree automata, 2015. doi:10.48550/ARXIV.1509.06233.
10 T. Heindel. A Myhill-Nerode theorem beyond trees and forests via finite syntactic categories

internal to monoids. Preprint, 2017.
11 John Power and Edmund Robinson. Premonoidal categories and notions of computation.

Mathematical Structures in Computer Science, 7(5), 1997. doi:10.1017/S0960129597002375.
12 Kimmo I. Rosenthal. Quantaloids, enriched categories and automata theory. Applied Categorical

Structures, 3(3):279–301, 1995. doi:10.1007/bf00878445.
13 Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA

Sierpinski triangles. PLOS Biology, 2(12), 12 2004. doi:10.1371/journal.pbio.0020424.
14 Jacques Sakarovitch. Elements of automata theory. Cambridge University Press, Cambridge

New York, 2009.
15 P. Selinger. A survey of graphical languages for monoidal categories. In B. Coecke, editor,

New Structures for Physics, pages 289–355. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. doi:10.1007/978-3-642-12821-9_4.

16 Henning Urbat, Jiri Adámek, Liang-Ting Chen, and Stefan Milius. Eilenberg Theorems for Free.
In Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin, editors, 42nd International
Symposium on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of
LIPIcs, pages 43:1–43:15, Dagstuhl, Germany, 2017. doi:10.4230/LIPIcs.MFCS.2017.43.

17 R.F.C. Walters. A note on context-free languages. Journal of Pure and Applied Algebra,
62(2):199–203, 1989. doi:10.1016/0022-4049(89)90151-5.

18 Vladimir Zamdzhiev. Rewriting Context-free Families of String Diagrams. PhD thesis,
University of Oxford, 2016.

A String diagrams for monoidal categories

We briefly recall the string diagram notation for morphisms in free (strict) monoidal categories.
Recall that a strict monoidal category is a category C equipped with a functor ⊗ : C×C → C

(monoidal product), and an object I ∈ C (monoidal unit), such that for all objects A, B, C ∈ C,
A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C and A ⊗ I = I = I ⊗ A.

We choose a left to right convention for our string diagrams. Objects are depicted as
wires labelled by the object, and by convention the monoidal unit is not drawn, i.e. it
is represented by the empty diagram . The monoidal product of objects is depicted
by wires drawn in parallel. A morphism f : A1 ⊗ ... ⊗ An → B1 ⊗ ... ⊗ Bm is depicted
as a box labelled by f with wires A1 ⊗ ... ⊗ An entering on the left and B1 ⊗ ... ⊗ Bm

exiting on the right. By convention, no box is drawn for identity morphisms, and so the
identity on the monoidal unit is also the empty diagram. The monoidal product f ⊗ g

of morphisms f : A1 ⊗ ... ⊗ An → B1 ⊗ ... ⊗ Bm, g : C1 ⊗ ... ⊗ Cn′ → D1 ⊗ ... ⊗ Dm′ is
depicted by writing the morphisms in parallel. Sequential composition f # h of morphisms
f : A1 ⊗ ... ⊗ An → B1 ⊗ ... ⊗ Bm, h : B1 ⊗ ... ⊗ Bm → E1 ⊗ ... ⊗ Ep is depicted by joining
the outgoing wires of one box to the incoming wires of another. In summary we have:

https://doi.org/10.1017/S0960129521000293
https://doi.org/10.1093/logcom/exx029
https://doi.org/10.48550/ARXIV.1509.06233
https://doi.org/10.1017/S0960129597002375
https://doi.org/10.1007/bf00878445
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.4230/LIPIcs.MFCS.2017.43
https://doi.org/10.1016/0022-4049(89)90151-5

M. Earnshaw and P. Sobociński 16

f
B1

Bm

A1

An

f
A1

An

A1

An

g
D1

Dm'

C1

Cn'
h

E1

Ep

f⊗g f;h

A1

An

idA1⊗...⊗An

......
...

...

... ...

This notation is sound and complete: an equation between morphisms of strict monoidal
categories follows from the axioms of strict monoidal categories if and only if it holds between
string diagrams up to planar isotopy. Working with string diagrams rather than the usual
term syntax for morphisms is more intuitive, and leads to shorter proofs, since the structural
equations (such as associativity of composition and monoidal product) hold automatically.
See [15, §3] for more details and further references.

B Congruence on a monoidal category

▶ Definition 61. A congruence on a monoidal category C is an equivalence relation f ∼ g on
pairs of parallel morphisms f, g : x → x′ compatible with composition and monoidal product:

f ∼ g =⇒ k ◦ f ◦ h ∼ k ◦ g ◦ h whenever these composites are defined
f ∼ g =⇒ p ⊗ f ⊗ q ∼ p ⊗ g ⊗ q

Given a congruence on a monoidal category C, we can define the quotient monoidal
category C/∼ as the category with objects those of C, and homsets (C/∼)(x, x′) := C(x, x′)/∼,
with composition and monoidal product defined in the obvious way. The quotient functor
C → C/∼ is monoidal, full and bijective on objects (and strict when C is strict). When C is a
pro, the quotient monoidal category is a pro, and the quotient functor is a pro morphism.
One can easily verify with string diagrams that the syntactic congruence (Definition 35) is
indeed a congruence, and so the syntactic pro is well defined.

C Cartesian restriction categories

A cartesian restriction category can be defined as a symmetric monoidal category in which
every object is equipped with a coherent commutative comonoid structure for which comulti-
plication is natural. The following equations spell out the details of this definition. We write

for the counit of the comonoid on an arbitrary object, for the comultiplication of the

comonoid on an arbitrary object, and for the symmetry between two objects. Then to say
that there is a commutative comonoid structure on each object is to say that the following
equations of string diagrams (CCM) hold (respectively: coassociativity, commutativity, and
left unitality):

= = = (CCM)

Note that “right unitality” may be derived from these. To say that these comonoid
structures are coherent is to say that for all objects X and Y we have the following equations

M. Earnshaw and P. Sobociński 17

of string diagrams:

X⊗Y

X⊗Y

X⊗Y

X

Y

X

X

Y

Y

= X⊗Y

X

Y= (coherent)

Finally to say that comultiplication natural is to say that we can move morphisms through
comultiplication as follows:

fX

Y

Y f

f

X

Y

Y= (natural)

D Details for Section 7

Proof of Lemma 53. It is clear that identity relations are convex. It remains to show that
the composite of convex relations is convex, and that the monoidal product of convex relations
is convex. For the former, take convex relations ∆α : Qa → P(Qb), ∆β : Qb → P(Qc), and
take (∆β ⋄ ∆α)∗ = ∆∗

β ◦ ∆∗
α, where ⋄ is composition in Kl(P). Consider the following diagram:

(PQ)a (PQ)b (PQ)c

P(Qa) P(Qb) P(Qc)

P2(Qb) P2(Qc)

P3(Qc)

∆∗
α

∆#
α

∇ ∇

P(∆α) µ

∆∗
β

∆#
β

∇

P(∆β) µ

P(µ)P2(∆β)

We want to show that ∆#
β ◦ ∆#

α = (∆β ⋄ ∆α)#, so that the pasting of the two convexity
squares at the top witnesses convexity of the composite. By definition of Kleisli extension we
have that:

∆#
β ◦ ∆#

α = µ ◦ P(∆β) ◦ µ ◦ P(∆α)

by naturality of µ,

= µ ◦ P(µ) ◦ P2(∆β) ◦ P(∆α)
= µ ◦ P(µ ◦ P(∆β) ◦ ∆α)
= µ ◦ P(∆β ⋄ ∆α)
= (∆β ⋄ ∆α)#

Now take convex relations ∆γ : Qn1 → P(Qm1), ∆ε : Qn2 → P(Qm2). Take (∆γ ⊗ ∆ε)∗ =
∆∗

γ × ∆∗
ε. We have that:

P(Q)n1+n2
(∆γ ⊗∆ε)∗

−−−−−−−→ P(Q)m1+m2 ∇−→ P(Qm1+m2)

= P(Q)n1+n2
⟨∇◦∆∗

γ ,∇◦∆∗
ε⟩

−−−−−−−−−→ P(Qm1) × P(Qm2) ∇−→ P(Qm1+m2)

M. Earnshaw and P. Sobociński 18

by convexity of ∆γ , ∆ε,

= P(Q)n1+n2 ∇×∇−−−→ P(Qn1) × P(Qn2) P(∆γ)×P(∆ε)−−−−−−−−−→ PP(Qm1) × PP(Qm2)
µ×µ−−−→ P(Qm1) × P(Qm2) ∇−→ P(Qm1+m2)

= P(Q)n1+n2 ∇−→ P(Qn1+n2) P(∆γ ×∆ε)−−−−−−−→ P(P(Qm1) × P(Qm2)) P(∇)−−−→ PP(Qm1+m2) µ−→ P(Qm1+m2)

= P(Q)n1+n2 ∇−→ P(Qn1+n2) P(∆γ ⊗∆ε)−−−−−−−→ PP(Qm1+m2) µ−→ P(Qm1+m2).

Hence ∆γ ⊗ ∆ε is convex. ◀

Proof of Lemma 55. We need to show that this mapping is a morphism of pros. It is clear
that identities are preserved. It remains to show that that composition and monoidal product
are preserved. Let ∆α : Qa → P(Qb), ∆β : Qb → P(Qc). We require DQ(∆β ⋄ ∆α) =
DQ(∆β)◦DQ(∆α). This follows from the commutativity of the following diagram (naturality
of ∇ and the naturality of η), and the unit law for Kleisli composition in Par.

(⊥P+(Q))b (⊥⊥P+(Q))b

⊥P+(Q)b ⊥(⊥P+(Q))b

∇

⊥ηb

η
∇

ηb

Strict preservation of the monoidal product follows easily from the fact that (∆γ ⊗∆ε)∗ =
∆∗

γ × ∆∗
ε. ◀

Proof of Theorem 59. We show that the defined mapping is indeed a morphism of pros.
For composition, we need to show ϕ([β] #[γ]) = ϕ([β]) # ϕ([γ]). The ith component of
ϕ([β] #[γ])([α1], ..., [αn]) is the equivalence class:

...
...

αₙ

α1

β γ i

where the ith output of γ is dangling on the right. The ith component of (ϕ([β]) # ϕ([γ]))([α1], ..., [αn])
is the equivalence class:

γ

... ...

... ...

αₙ

α1

β

α1

... ...

αₙ

β

...
...

i

M. Earnshaw and P. Sobociński 19

But since FΓ/≡L is a cartesian restriction prop, the representatives of these equivalence
classes are the same diagram (by repeated applications of the naturality of and unitality).
Hence this is the same equivalence class, and ϕ preserves composition.

For identities, the ith component of ϕ([idn])([α1], ..., [αn]) is the equivalence class:

...
...

αₙ

αi

α1

For ϕ([idn]) to be the identity, this needs to be equal to the equivalence class [αi]:

αi

But these must indeed be the same equivalence class, for if there were a context that
distinguished these morphisms, we would have a contradiction, since languages are closed
under monoidal products (Lemma 26). Similar diagrams hold for the preservation of the
monoidal product, and thus we have a morphism of pros. ◀

	1 Introduction
	2 Related work
	3 Regular monoidal grammars and regular monoidal languages
	3.1 Monoidal graphs and free pros
	3.2 Monoidal languages and regular monoidal grammars
	3.3 Regular monoidal languages
	3.4 Non-deterministic monoidal automata
	3.5 Closure properties of regular monoidal languages

	4 Regular word and tree languages as regular monoidal languages
	4.1 Finite-state automata
	4.2 Tree automata

	5 The syntactic pro of a monoidal language
	6 Deterministic monoidal automata
	7 Deterministically recognizable monoidal languages
	7.1 Convex automata and the powerset construction
	7.2 A sufficient condition for deterministic recognizability

	8 Conclusion and future work
	A String diagrams for monoidal categories
	B Congruence on a monoidal category
	C Cartesian restriction categories
	D Details for Section 7

