
The Produoidal Algebra of Process Decomposition
Matt Earnshaw, James Hefford and Mario Román

Abstract—We introduce the normal produoidal category of
monoidal contexts over an arbitrary monoidal category. In the
same sense that a monoidal morphism represents a process, a
monoidal context represents an incomplete process: a piece of
a decomposition, possibly containing missing parts. We char-
acterize monoidal contexts in terms of universal properties. In
particular, symmetric monoidal contexts coincide with monoidal
lenses, endowing them with a novel universal property. We apply
this algebraic structure to the analysis of multi-party interaction
protocols in arbitrary theories of processes.

1 Introduction
Theories of processes, such as stochastic, partial or linear

functions, are a foundational tool in computer science. They
help us model how systems interact in terms of a solid
mathematical foundation. Any theory of processes involving
operations for sequential composition and parallel composi-
tion, satisfying reasonable axioms, forms a monoidal category.

Monoidal categories are versatile: they can be used in
the description of quantum circuits [AC09], stochastic pro-
cesses [CJ19], [Fri20], relational queries [BSS18] and non-
terminating processes [CL02], among many other applications
[CFS16].

At the same time, monoidal categories have two intuitive,
sound and complete calculi: the first in terms of string
diagrams [JS91], and the second in terms of their linear
type theory [Shu16]. String diagrams are a 2-dimensional
syntax in which processes are represented by boxes, and their
inputs and outputs are connected by wires. The type theory
of symmetric monoidal categories is the basis of the more
specialized arrow do-notation used in functional programming
languages [Hug00], [Pat01], which becomes do-notation for
Kleisli categories of commutative monads [Mog91], [Gui80].
Let us showcase monoidal categories, their string diagrams
and the use of do-notation in the description of a protocol.

1.1 Protocol Description
The Transmission Control Protocol (TCP) is a connection-

based communication protocol. Every connection begins with
a three-way handshake: an exchange of messages that synchro-
nizes the state of both parties. This handshake is defined in
RFC793 to have three steps: SYN, SYN-ACK and ACK [Pos81].

The client initiates the communication by sending a syn-
chronization packet (SYN) to the server. The synchronization
packet contains a pseudorandom number associated to the
session, the Initial Sequence Number of the client (CLI).

The server acknowledges this packet and sends a message
(ACK) containing its own sequence number (SRV) together with
the client’s sequence number plus one (CLI+1). These two
form the SYN-ACK message. Finally, the client sends a final ACK
message with the server’s sequence number plus one, SRV+ 1.

When the protocol works correctly, both client and server end
up with the pair (CLI + 1, SRV + 1).

Client Server

SYN

NOISE

SYN:10

ACK:00

SYN:11

ACK:20

SYN:11

ACK:21

SYN-ACK

CLI:11

SRV:21

CLI:11

SRV:21

CLI:11

SRV:20

CLI:10

SRV:00

NOISE

NOISE

ACK

RCV

Fig. 1: TCP Three way handshake.

This protocol is traditionally described in terms of a com-
munication diagram (Figure 1). This diagram can be taken
seriously as a formal mathematical object: it is a string diagram
describing a morphism in a monoidal category.

syn :: Client ~> (Client, Syn, Ack)
syn(client) = do
client <- random
return (client, client, 0)

Fig. 2: Implementation of the SYN component.

The implementation of each component of the protocol is
traditionally written as pseudocode. This pseudocode can also
be taken seriously as the expression of a morphism in the
same monoidal category, possibly with extra structure: in this
case, a commutative Freyd category (Figure 2, see Appendix
Section A.1 [Mog91]). That is, symmetric monoidal categories
admit two different internal languages, and we can use both
to interpret formally the traditional description of a protocol
in terms of string diagrams and pseudocode.

ar
X

iv
:2

30
1.

11
86

7v
1

 [
cs

.L
O

]
 2

7
Ja

n
20

23

1.2 Types for Message Passing

The last part in formalizing a multi-party protocol in terms
of monoidal categories is to actually separate its component
parties. For instance, the three-way handshake can be split into
the client, the server and a channel. Here is where the existing
literature in monoidal categories seems to fall short: the parts
resulting from the decomposition of a monoidal morphism are
not necessarily monoidal morphisms themselves (see Figure 3
for the diagrammatic representation). We say that these are
only monoidal contexts.

Client Server

SYN

NOISE

SYN-ACK

NOISE

NOISE

ACK

RCV

Channel

Fig. 3: Parties in the TCP Three-way handshake.

Contrary to monoidal morphisms, which only need to
declare their input and output types, monoidal contexts need
behavioural types [PS93], [HLV+16] that specify the order and
type of the exchange of information along their boundary.

A monoidal context may declare intermediate send (!𝐴)
and receive (?𝐴) types, separated by a sequencing operator
(C). For instance, the channel is a monoidal morphism just
declaring that it takes an input message (Msg) and produces
another output message; but the client is a monoidal context
that transforms its memory type Client→ Client at the same
time it sends, receives and then sends a message; and the
server transforms its type Server → Server while, dually to
the client, it receives, sends and then receives a message.

∈ LC
(Client
Client ; !Msg ⊳ ?Msg ⊳ !Msg

)
;

∈ LC
(Server
Server ; ?Msg ⊳ !Msg ⊳ ?Msg

)
;

NOISE ∈ C (Msg; Msg) ;

Session types [HYC08], including the send (!𝐴) and receive
(?𝐴) polarized types, have been commonplace in logics of
message passing. Cockett and Pastro [CP09] already proposed
a categorical semantics for message-passing which, however,
needs to go beyond monoidal categories, into linear actegories
and polyactegories.

Our claim is that, perhaps surprisingly, monoidal categories
already have the necessary algebraic structure to define mo-
noidal contexts and their send-receive polarized types. Latent
to any monoidal category, there exists a universal category
of contexts with polarized types (!/?) and parallel/sequence
operators (⊗/C).

1.3 Reasoning with Contexts

This manuscript introduces the notion of monoidal context
and symmetric monoidal context; and it explains how dinatu-
rality allows us to reason with them. In the same way that we
reason with monoidal morphisms using string diagrams, we
can reason about monoidal contexts using incomplete string
diagrams [BDSPV15], [Rom21].

For instance, consider the following fact about the TCP
three-way handshake: the client does not need to store a
starting SRV number for the server, as it will be overwritten
as soon as the real one arrives. This fact only concerns the
actions of the client, and it is independent of the server and
the channel. We would like to reason about it preserving
this modularity, and this is what the incomplete diagrams in
Figure 4 achieve.

Client

SYN∗

ACK∗

Client

SYN

ACK∗

PRJ

=

Client

SYN

ACK∗

Client

SYN

ACK

=
PRJ

=

Fig. 4: Reasoning only with the Client.

Here, we define SYN∗ = SYN #PRJ to be the same as the SYN
process but projecting out only the client CLI number. We also
define a new ACK∗ that ignores the server SRV number, so that
ACK = PRJ#ACK∗. These two equations are enough to complete
our reasoning.

Monoidal contexts and their incomplete diagrams are de-
fined to be convenient tuples of morphisms, e.g. (SYN|ACK) in
our example; what makes them interesting is the equivalence
relation we impose on them: this equivalence relation makes
the pair (SYN # PRJ|ACK∗) equal to (SYN|PRJ # ACK∗). Dinat-
urality is the name we give to this relation, and we will see
how it arises canonically from the algebra of profunctors.

1.4 The Produoidal Algebra of Monoidal Context
Despite the relative popularity of string diagrams and

other forms of formal 2-dimensional syntax, the algebra of
incomplete monoidal morphisms has remained obscure. This
manuscript elucidates this algebra: we show that, as monoidal
morphisms together with their string diagrams form monoidal
categories, monoidal contexts together with their incomplete
string diagrams form normal produoidal categories. Normal
produoidal categories were a poorly understood categorical
structure, for which we provide examples. Let us motivate
“normal produoidal categories” by parts.

First, the “duoidal” part. Monoidal contexts can be com-
posed sequentially and in parallel, but also nested together
to fill the missing parts. Nesting is captured by categorical
composition, so we need specific tensors for both sequen-
tial (C) and parallel (⊗) composition. This is what duoidal
categories provide. Duoidal categories are categories with
two monoidal structures, e.g. (C, 𝑁) and (⊗, 𝐼). These two
monoidal structures are in principle independent but, whenever
they share the same unit (𝐼 � 𝑁), they become well-suited to
express process dependence [SS22]: they become “normal”.

Finally, the “pro-” prefix. It is not that we want to impose
this structure on top of the monoidal one, but we want to
capture the structure morphisms already form. The two tensors
(C, ⊗) do not necessarily exist in the original category; in
technical terms, they are not representable or functorial, but
virtual or profunctorial. This makes us turn to the produoidal
categories of Booker and Street [BS13].

Not only is all of this algebra present in monoidal contexts.
Monoidal contexts are the canonical such algebra; in a precise
sense given by universal properties. The slogan for the main
result of this manuscript (Theorem 6.6) is that

Monoidal contexts are the free normalization of the cofree
produoidal category over a monoidal category.

1.5 Related Work
Far from being the proposal of yet another paradigm,

monoidal contexts form a novel algebraic formalization of a
widespread paradigm. We argue that the idea of monoidal
contexts has been recurrent in the literature, just never ap-
pearing explicitly and formally. Our main contribution is to
formalize an algebra of monoidal contexts, in the form of a
normal produoidal category.

In fact, the Symposium on Logic in Computer Science
has recently seen multiple implicit applications of monoidal
contexts. Kissinger and Uĳlen [KU17] describe higher order
quantum processes using contexts with holes in compact
closed monoidal categories. Ghani, Hedges, Winschel and
Zahn [GHWZ18] describe economic game theory in terms
of lenses and incomplete processes in cartesian monoidal
categories. Bonchi, Piedeleu, Sobociński and Zanasi [BPSZ19]
study contextual equivalence in their monoidal category of
affine signal flow graphs. Di Lavore, de Felice and Román
[DLdFR22] define monoidal streams by iterating monoidal
context coalgebraically.

Language theory. Motivated by language theory and the
Chomsky-Schützenberger theorem, Melliès and Zeilberger
[MZ22] were the first to present the multicategorical splice-
contour adjunction. We are indebted to their exposition, which
we extend to the promonoidal and produoidal cases. Earnshaw
and Sobociński [ES22] described a congruence on formal lan-
guages of string diagrams using monoidal contexts. We prove
how monoidal contexts arise from an extended produoidal
splice-contour adjunction; unifying these two threads.

Session types. Session types [Hon93], [HYC08] are the
mainstay type formalism for communication protocols, and
they have been extensively applied to the 𝜋-calculus [SW01].
Our approach is not set up to capture all of the features of
a fully fledged session type theory [KPT96]. Arguably, this
makes it more general in what it does: it always provides a
universal way of implementing send (!𝐴) and receive (?𝐴)
operations in an arbitrary theory of processes represented by
a monoidal category. For instance, recursion and the inter-
nal/external choice duality [GH99], [PS93] are not discussed,
although they could be considered as extensions in the same
way they are to monoidal categories: via trace [Has97] and
linear distributivity [CS97].

Lenses and incomplete diagrams. Lenses are a notion of
bidirectional transformation [FGM+07] that can be cast in
arbitrary monoidal categories. The first mention of monoi-
dal lenses separate from their classical database counterparts
[JRW12] is due to Pastro and Street [PS07], who identify them
as an example of a promonoidal category. However, it was with
a different monoidal structure [Ril18] that they became popular
in recent years, spawning applications not only in bidirectional
transformations [FGM+07] but also in functional programming
[PGW17], [CEG+20], open games [GHWZ18], polynomial
functors [NS22] and quantum combs [HC22]. Relating this
monoidal category of lenses with the previous promonoidal
category of lenses was an open problem; and the promonoidal
structure was mostly ignored in applications.

We solve this problem, proving that lenses are a universal
normal symmetric produoidal category (the symmetric mo-
noidal contexts), which endows them with a novel algebra
and a novel universal property. This also extends work on the
relation between incomplete diagrams, comb-shaped diagrams,
and lenses [Rom20], [Rom21].

Finally, Nester et al. have recently proposed a syntax for
lenses and message-passing [Nes23], [BNR22] and lenses
themselves have been applied to protocol specification [VC22].
Spivak [Spi13] also discusses the multicategory of wiring
diagrams, later used for incomplete diagrams [PSV21] and
related to lenses [SSV20]. The promonoidal categories we
use can be seen as multicategories with an extra coherence
property. In this sense, we contribute the missing algebraic
structure of the universal multicategory of wiring diagrams
relative to a monoidal category.

1.6 Contributions
Our main contribution is the original definition of a pro-

duoidal category of monoidal contexts over a monoidal cat-

egory (Definition 6.1) and its characterization in terms of
universal properties (Theorem 6.6).

Section 2 presents expository material on profunctors, di-
naturality and promonoidal categories; the rest are novel
contributions. Section 3 constructs spliced arrows as the cofree
promonoidal over a category (Theorem 3.7). Section 4, on
top of this, constructs spliced monoidal arrows as the cofree
produoidal over a monoidal category (Theorem 4.9). Section 6
explicitly constructs a produoidal algebra of monoidal contexts
(Proposition 6.5) as a free normalization. Section 7 constructs
a symmetric produoidal algebra of monoidal lenses (Proposi-
tion 7.2), universally characterizing them (Theorem 7.3), and
an interpretation of send/receive types (!/?) (Proposition 7.6).
Section 5 introduces a novel free normalization procedure
(Theorems 5.3 and 5.4) as an idempotent monad on produoidal
categories, employed in Sections 6 and 7.

2 Profunctors and Virtual Structures
Profunctors describe families of processes indexed by the

input and output types of a category. Profunctors provide
canonical notions for composition, dinaturality and virtual
structure. These notions are not only canonical, but also easy
to reason with thanks to coend calculus [Lor21].

Definition 2.1. A profunctor 𝑃 : B0 × ...×B𝑚� A0 × ...×A𝑛
is a functor 𝑃 : A𝑜𝑝0 ...× A𝑜𝑝𝑛 × B0 × ...× B𝑚 → Set.

For our purposes, a profunctor 𝑃(𝐴0, ..., 𝐴𝑛; 𝐵0, ..., 𝐵𝑚) is a
family of processes indexed by contravariant inputs 𝐴0, ..., 𝐴𝑛
and covariant outputs 𝐵0, ..., 𝐵𝑚. The profunctor is endowed
with jointly functorial left (�0, ..., �𝑚) and right (≺0, ..., ≺𝑛)
actions of the morphisms of A0, ...,A𝑛 and B0, ...,B𝑚, respec-
tively [Bén00], [Lor21].1

2.1 Dinaturality
Composing profunctors is subtle: the same processes could

arise as the composite of different pairs of processes and so,
we need to impose a careful equivalence relation. Fortunately,
profunctors come with a canonical notion of dinatural equiv-
alence which achieves precisely this.

Imagine we try to connect two different processes: 𝑝 ∈
𝑃(𝐴0, ..., 𝐴𝑛; 𝐵0, . . . , 𝐵𝑚), and 𝑞 ∈ 𝑄(𝐶0, ..., 𝐶𝑘 ; 𝐷0, . . . , 𝐷ℎ);
and we have some morphism 𝑓 : 𝐵𝑖 → 𝐶 𝑗 that translates the
i-th output port of 𝑝 to the j-th input port of 𝑞. Let us write
(𝑖 | 𝑗) for this connection operation. Note that we could connect
them in two different ways:
• we could use 𝑓 to change the output of the first process
𝑝 ≺𝑖 𝑓 before connecting both, (𝑝 ≺ 𝑖 𝑓) 𝑖 | 𝑗 𝑞;

• and we could use 𝑓 to change the input of the second
process 𝑓 � 𝑗 𝑞 before connecting both, 𝑝 𝑖 | 𝑗 (𝑓 � 𝑗 𝑞).

These are different descriptions, made up of two different com-
ponents. However, they essentially describe the same process:
they are dinaturally equal [DLdFR22]. Indeed, profunctors are
canonically endowed with a notion of dinatural equivalence

1We simply use (≺/�) without any subscript whenever the input/output is
unique. See Appendix, Section B for more details on profunctors.

[Bén00], [Lor21], which precisely equates these two descrip-
tions. Profunctors, and their elements, are thus composed up
to dinatural equivalence.

Definition 2.2 (Dinatural equivalence). Consider two profunc-
tors 𝑃 : B0 × ...×B𝑚� A0 × ...×A𝑛 and 𝑄 : C0 × ...×C𝑘 �
D0 × ...×Dℎ such that B𝑖 = C 𝑗 ; and let S𝑖, 𝑗

𝑃,𝑄
(𝐴;𝐶) be the set∑︁

𝑋 ∈B𝑖
𝑃(𝐴0...𝐴𝑛; 𝐵0...𝑋...𝐵𝑚) ×𝑄(𝐶0...𝑋...𝐶𝑘 ; 𝐷0...𝐷ℎ).

Dinatural equivalence, (∼), on the set S𝑖, 𝑗
𝑃,𝑄
(𝐴;𝐶) is the small-

est equivalence relation satisfying (𝑝≺𝑖 𝑓 𝑖 | 𝑗 𝑞) ∼ (𝑝 𝑖 | 𝑗 𝑓 � 𝑗𝑞).
The coend is defined as this coproduct quotiented by dinatu-
rality, S𝑖, 𝑗

𝑃,𝑄
(𝐴;𝐶)/(∼), and written as an integral.∫ 𝑋 ∈C

𝑃(𝐴0...𝐴𝑛; 𝐵0...𝑋...𝐵𝑚) ×𝑄(𝐶0...𝑋...𝐶𝑘 ; 𝐷0...𝐷ℎ).

Definition 2.3 (Profunctor composition). Consider two pro-
functors 𝑃 : B0×...×B𝑚� A0×...×A𝑛 and 𝑄 : C0×...×C𝑘 �
D0 × ...×Dℎ such that B𝑖 = C 𝑗 ; their composition along ports
𝑖 and 𝑗 is a profunctor; we write it marking this connection

𝑃(𝐴0...𝐴𝑛; 𝐵0...•𝑥 ...𝐵𝑛) �𝑄(𝐶0...•𝑥 ...𝐶𝑘 ; 𝐷0...𝐷ℎ),

and it is defined as the coproduct of the product of both
profunctors, indexed by the common variable, and quotiented
by dinatural equivalence,∫ 𝑋 ∈C

𝑃(𝐴0...𝐴𝑛; 𝐵0...𝑋...𝐵𝑚) ×𝑄(𝐶0...𝑋...𝐶𝑘 ; 𝐷0...𝐷ℎ).

Remark 2.4 (Representability). Every functor 𝐹 : A→ 𝐵 gives
rise to two different profunctors: its representable profunc-
tor A(𝐹•, •) : A � B, and its corepresentable profunctor
A(•, 𝐹•) : A� B. We say that a profunctor is representable
or corepresentable if it arises in this way. Under this interpreta-
tion, functors are profunctors that happen to be representable.
This suggests that we can repeat structures based on functors,
such as monoidal categories, now in terms of profunctors.

We justified in the introduction the importance of monoi-
dal categories: they are the algebra of processes composing
sequentially and in parallel, joining and splitting resources.
However, there exist some theories that can deal only with
splitting without being necessarily full theories of processes:
that is, we may be able to talk about splitting without being
able to talk about joining. Such “monoidal categories on one
side” are promonoidal categories.

The difference between monoidal categories and promonoi-
dal categories is that the tensor is no longer a functor but is
instead a profunctor.2 In other words, the tensor is no longer
representable – such a structure is called virtual, as in virtual
double and virtual duoidal categories [CS10], [Shu17].

2In more technical terms, monoidal categories are pseudomonoids in the
monoidal bicategory of categories and functors; while promonoidal categories
are pseudomonoids in the monoidal bicategory of categories and profunctors.

2.2 Promonoidal Categories
Promonoidal categories are the algebra of coherent decom-

position. A category C contains sets of morphisms, C(𝑋;𝑌).
In the same way, a promonoidal category V contains sets of
splits, V(𝑋;𝑌0C𝑌1), morphisms, V(𝑋;𝑌), and units, V(𝑋; 𝑁),
where 𝑁 is the virtual tensor unit. Splits, V(𝑋;𝑌0 C 𝑌1),
represent a way of decomposing objects of type 𝑋 into objects
of type 𝑌0 and 𝑌1. Morphisms, V(𝑋;𝑌), as in any category, are
transformations of 𝑋 into 𝑌 . Units, V(𝑋; 𝑁), are the atomic
pieces of type 𝑋 .

These decompositions must be coherent. For instance, imag-
ine we want to split 𝑋 into 𝑌0, 𝑌1 and 𝑌2. Splitting 𝑋 into
𝑌0 and something (•), and then splitting that something into
𝑌1 and 𝑌2 should be doable in essentially the same ways as
splitting 𝑋 into something (•) and 𝑌2, and then splitting that
something into 𝑌0 and 𝑌1. Formally, we are saying that,

V(𝑋;𝑌0 C •) �V(•;𝑌1 C 𝑌2) � V(𝑋; • C 𝑌2) �V(•;𝑌0 C 𝑌1),

and, in fact, we just write V(𝑋;𝑌0C𝑌1C𝑌2) for the set of such
decompositions.

Definition 2.5 (Promonoidal category). A promonoidal cate-
gory is a category V(•; •) endowed with profunctors

V(•; • C •) : V × V� V, and V(•; 𝑁) : 1� V.

Equivalently, these are functors

V(•; • C •) : Vop × V × V→ Set, and V(•; 𝑁) : Vop → Set.

Moreover, promonoidal categories must be endowed with the
following natural isomorphisms,

V(𝑋; • C 𝑌2) �V(•;𝑌0 C 𝑌1) � V(𝑋; • C 𝑌2) �V(•;𝑌0 C 𝑌1),
V(𝑋; • C 𝑌) �V(•; 𝑁) � V(𝑋;𝑌),
V(𝑋;𝑌 C •) �V(•; 𝑁) � V(𝑋;𝑌),

called 𝛼, 𝜆, 𝜌, respectively, and asked to satisfy the pentagon
and triangle coherence equations, 𝛼 # 𝛼 = (𝛼 � 1) # 𝛼 # (1 � 𝛼),
and (𝜌 � 1) = 𝛼 # (𝜆 � 1).

Definition 2.6 (Promonoidal functor). Let V and W be pro-
monoidal categories. A promonoidal functor 𝐹 : V(•, •) →
W(•, •) is a functor between the two categories, together with
natural transformations:

𝐹C : V(𝐴; 𝐵 C 𝐶) →W(𝐹𝐴; 𝐹𝐵 C 𝐹𝐶), and
𝐹𝑁 : V(𝐴; 𝑁) →W(𝐹𝐴; 𝑁),

that satisfy 𝜆 # 𝐹map = (𝐹C × 𝐹𝑁) # 𝜆, 𝜌 # 𝐹map = (𝐹C × 𝐹𝑁) # 𝜌,
and 𝛼# (𝐹C×𝐹C) #𝑖 = (𝐹C×𝐹C) #𝑖#𝛼. We denote by Promon the
category of promonoidal categories and promonoidal functors.

Remark 2.7 (Promonoidal coherence). As with monoidal cat-
egories, the pentagon and triangle equations imply that every
formal equation written out of coherence isomorphisms holds.
This means we can write V(•; • C • C •) without specifying
which one of the two sides of the associator we are describing.
Remark 2.8 (Multicategories). The reader may be more famil-
iar with the algebra of not-necessarily-coherent decomposition:

multicategories. Every promonoidal category V induces a
co-multicategory with morphisms given by elements of the
following sets V(•; • C 𝑛. . . C •). Similarly, Vop is a co-
promonoidal category and thus induces a multicategory. These
are special kinds of (co-)multicategories, they are coherent so
that every 𝑛-to-1 morphism splits, in any possible shape, as
2-to-1 and 0-to-1 morphisms; moreover, they do so uniquely
up to dinaturality. Appendix B.2 spells out this relation.

The next section studies how to coherently decompose mor-
phisms of a category. Categories are an algebraic structure for
sequential composition: they contain a “sequencing” operator
(#) and a neutral element, id. We present an algebra for
decomposing sequential compositions in terms of promonoidal
categories.

3 Sequential context
Assume a morphism factors as follows,

𝑓0 # 𝑔0 # ℎ # 𝑔1 # 𝑓1 # 𝑘 # 𝑓2.

We can say that this morphism came from the context 𝑓0 #� #
𝑓1 # � # 𝑓2, filled on its left side with the context 𝑔0 # � # 𝑔1,
then filled with ℎ, and finally completed on its right side with
the morphism 𝑘 . Figure 5 expresses this decomposition.

𝑓0 # � # 𝑓1 # � # 𝑓2
𝑓0

𝑔0 # � # 𝑔1

ℎ

𝑓1

𝑓2

ℎ

𝑔0 𝑔1 𝑘

𝑘

Fig. 5: Decomposition of 𝑓0 # 𝑔0 # ℎ # 𝑔1 # 𝑓1 # 𝑘 # 𝑓2.

Contexts compose in a tree-like structure, and their resulting
morphism is extracted by contouring that tree. This section
presents the algebra of context and decomposition. We then
prove that they are two sides of the same coin: the two sides
of an adjunction of categories.

3.1 Contour of a Promonoidal Category
Any promonoidal category freely generates another cate-

gory, its contour. This can be interpreted as the category that
tracks the processes of decomposition that the promonoidal
category describes. The construction is particularly pleasant
from the geometric point of view: it takes its name from the
fact that it can be constructed by following the contour of the
shape of the decomposition.

Definition 3.1 (Contour). The contour of a promonoidal cate-
gory V is a category CV that has two objects, 𝑋𝐿 (left-handed)
and 𝑋𝑅 (right-handed), for each object 𝑋 ∈ Vobj; and has as
arrows those that arise from contouring the decompositions of
the promonoidal category.

Specifically, it is freely presented by (i) a morphism 𝑎0 ∈
CV(𝐴𝐿; 𝐴𝑅), for each unit 𝑎 ∈ V(𝐴; 𝑁); (ii) a pair of

morphisms 𝑏0 ∈ CV(𝐵𝐿; 𝑋𝐿), 𝑏1 ∈ CV(𝑋𝑅; 𝐵𝑅), for each

𝑎

𝑎0

𝑏𝑏0 𝑏1 𝑐𝑐0

𝑐1

𝑐2

𝐴 𝐵 𝐶

𝑋 𝑌 𝑍

Fig. 6: Contour of a promonoidal.

morphism 𝑏 ∈ V(𝐵; 𝑋); and (iii) a triple of morphisms
𝑐0 ∈ CV(𝐶𝐿;𝑌 𝐿), 𝑐1 ∈ CV(𝑌𝑅; 𝑍𝐿), 𝑐2 ∈ CV(𝑍𝑅;𝐶𝑅) for
each split 𝑐 ∈ V(𝐶;𝑌 C 𝑍), see Figure 6.

For each equality 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑), we impose the equations
𝑎0 = 𝑐0 #𝑑0; 𝑎1 #𝑏0 = 𝑑1 and 𝑏1 = 𝑑2 #𝑐1; 𝑎2 #𝑏2 = 𝑐2. For each
equality 𝜌(𝑎 |𝑏) = 𝑐 = 𝜆(𝑑 | 𝑒), we impose 𝑎0 = 𝑐0 = 𝑑0 #𝑒0 #𝑑1
and 𝑎1 # 𝑏0 # 𝑎2 = 𝑐1 = 𝑑2. Graphically, these follow Figure 7.

𝑎𝑎0

𝑎1

𝑎2

𝑏𝑏0

𝑏1

𝑏2

𝑐𝑐0

𝑐1

𝑐2

𝑑𝑑0

𝑑1

𝑑2

= ;

𝑎𝑎0

𝑎1

𝑎2

𝑏0

𝑏

= 𝑐𝑐0 𝑐1

𝑑𝑑0

𝑑1

𝑑2

;=

𝑒0

𝑒

Fig. 7: Equations between contours from 𝛼, 𝜌, and 𝜆 in V.

Proposition 3.2. Contour gives a functor C : Promon→ Cat.

Proof. See Appendix, Proposition C.1. �

Remark 3.3. The contour of a multicategory was first in-
troduced by Melliès and Zeilberger [MZ22]. Definition 3.1
and the following Theorem 3.7 closely follow their work;
although the promonoidal version we introduce does involve
fewer equations due to the extra coherence (Remark 2.8).

3.2 The Promonoidal Category of Spliced Arrows
We described a category tracking the process of decompos-

ing in a given promonoidal category. However, we want to go
the other way around: given a category, what is the promonoi-
dal category describing decomposition in that category? This
subsection finds a right adjoint to the contour construction:
the spliced arrows promonoidal category. Spliced arrows have
already been used to describe context in parsing [MZ22].

Definition 3.4 (Spliced arrows). Let C be a category. The
promonoidal category of spliced arrows, SC, has as objects
pairs of objects of C. It uses the following profunctors to define
morphisms, splits and units.

SC
(
𝐴
𝐵; 𝑋𝑌

)
= C(𝐴; 𝑋) × C(𝑌, 𝐵);

SC(𝐴𝐵; 𝑋𝑌 C 𝑋
′

𝑌 ′) = C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝐵);
SC(𝐴𝐵; 𝑁) = C(𝐴; 𝐵).

In other words, morphisms are pairs of arrows 𝑓 : 𝐴 → 𝑋

and 𝑔 : 𝑌 → 𝐵. Splits are triples of arrows 𝑓 : 𝐴→ 𝑋 , 𝑔 : 𝑌 →

𝑋 ′ and ℎ : 𝑌 ′ → 𝐵. Units are simply arrows 𝑓 : 𝐴 → 𝐵. We
use the following notation for

morphisms, 𝑓 # � # 𝑔 ∈ SC
(
𝐴
𝐵; 𝑋𝑌

)
;

splits, 𝑓 # � # 𝑔 # � # ℎ ∈ SC
(
𝐴
𝐵; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
;

and units, 𝑓 ∈ SC
(
𝐴
𝐵; 𝑁

)
.

The profunctor actions, associativity and unitality of the pro-
monoidal category are defined in a straightforward way by
filling the holes. For instance,

(𝑓 # � # 𝑔 # � # ℎ) ≺1 (𝑢 # � # 𝑣) = (𝑓 # 𝑢 # � # 𝑣 # 𝑔 # � # ℎ),
(𝑓 # � # 𝑔 # � # ℎ) ≺2 (𝑢 # � # 𝑣) = (𝑓 # � # 𝑔 # 𝑢 # � # 𝑣 # ℎ).

See the Appendix, Section C for details.

Proposition 3.5. Spliced arrows form a promonoidal category
with their splits, units, and suitable coherence morphisms.

Proof. See Appendix, Proposition C.2. �

As a consequence, we can talk about spliced arrows with
an arbitrary number of holes: for instance, a three-way split
arises as a split filled by another split, in either position. For
instance,

〈 𝑓0 # � # 𝑓1 # � # 𝑓2 # � # 𝑓3〉

can be written in two different ways,

〈 𝑓0 # � # 𝑓2 # � # 𝑓3〉 ≺1 〈𝑖𝑑 # � # 𝑓1 # � # 𝑖𝑑〉 or
〈 𝑓0 # � # 𝑓1 # � # 𝑓3〉 ≺2 〈𝑖𝑑 # � # 𝑓2 # � # 𝑖𝑑〉.

Proposition 3.6. Splice gives a functor S : Cat→ Promon.

Proof. See Appendix, Proposition C.6. �

Theorem 3.7. There exists an adjunction between categories
and promonoidal categories, where the contour of a promo-
noidal is the left adjoint, and the splice category is the right
adjoint.

Proof. See Appendix, Theorem C.7. �

Spliced arrows can be computed for any category, including
monoidal categories. However, we expect the spliced arrows
of a monoidal category to have a richer algebraic structure.
This extra structure is the subject of the next section.

4 Parallel-Sequential Context
Monoidal categories are an algebraic structure for sequential

and parallel composition: they contain a “tensoring” operator
on morphisms, (⊗), apart from the usual sequencing, (#), and
identities (id).

Assume a monoidal morphism factors as follows,

𝑓0 # (𝑔 ⊗ (ℎ # (𝑘 ⊗ (𝑙0 # 𝑙1)))) # 𝑓1.

We can say that this morphism came from dividing everything
between 𝑓0 and 𝑓1 by a tensor. That is, from a context 𝑓0 # (�⊗
�) # 𝑓1. We filled the first hole of this context with a 𝑔, and
then proceeded to split the second part as ℎ # (� ⊗ �) # id.
Finally, we filled the first part with 𝑘 and the second one we
left disconnected by filling it with 𝑙0, id𝐼 , and 𝑙1.

𝑓0 # (� ⊗ �) # 𝑓1𝑓0 𝑓1

𝑔 𝑔 ℎ # (� ⊗ �) # 𝑖𝑑ℎ 𝑖𝑑

𝑘 𝑘 𝑙1𝑙0 𝑙0 ‖𝑙1

Fig. 8: Decomposition of 𝑓0 # (𝑔 ⊗ (ℎ # (𝑘 ⊗ (𝑙0 # 𝑙1)))) # 𝑓1.

This section studies decomposition of morphisms in a
monoidal category, in the same way we studied decomposition
of morphisms in a category before. We present an algebraic
structure for decomposing both sequential and parallel com-
positions: produoidal categories.

4.1 Produoidal Categories
Produoidal categories, first defined by Booker and Street

[BS13], provide an algebraic structure for the interaction of
sequential and parallel decomposition. A produoidal category
V not only contains morphisms, V(𝑋;𝑌), sequential splits,
V(𝑋;𝑌0C𝑌1), and sequential units, V(𝑋; 𝑁), as a promonoidal
category does; it also contains parallel splits, V(𝑋;𝑌0 ⊗ 𝑌1)
and parallel units, V(𝑋; 𝐼).
Remark 4.1 (Nesting virtual structures). Notation for nesting
functorial structures, say (C) and (⊗), is straightforward: we
use expressions like (𝑋1 ⊗ 𝑌1) C (𝑋2 ⊗ 𝑌2) without a second
thought. Nesting the virtual structures (C) and (⊗) is more
subtle: defining V(•; 𝑋 ⊗ 𝑌) and V(•; 𝑋 C𝑌) for each pair of
objects 𝑋 and 𝑌 does not itself define what something like
V(•; (𝑋1 ⊗ 𝑌1) C (𝑋2 ⊗ 𝑌2)) means. Recall that, in the virtual
case, 𝑋1 C𝑌1 and 𝑋1 ⊗𝑌1 are not objects themselves: they are
just names for the profunctors V(•; 𝑋1C𝑌1) and V(•; 𝑋1⊗𝑌1).

Instead, when we write V(•; (𝑋1 ⊗ 𝑌1) C (𝑋2 ⊗ 𝑌2)), we
formally mean V(•; •1 C •2) � V(•1; 𝑋1 ⊗ 𝑌1) � V(•2; 𝑋2 ⊗
𝑌2). By convention, nesting virtual structures means profunctor
composition in this text.

Definition 4.2 (Produoidal category). A produoidal category
is a category V endowed with two promonoidal structures,

V(•; • ⊗ •) : V × V� V, and V(•; 𝐼) : 1� V,

V(•; • C •) : V × V� V, and V(•; 𝑁) : 1� V,

such that one laxly distributes over the other. This is to say
that it is endowed with the following natural laxators,

𝜓2 : V(•; (𝑋 C 𝑌) ⊗ (𝑍 C𝑊)) → V(•; (𝑋 ⊗ 𝑍) C (𝑌 ⊗𝑊)),
𝜓0 : V(•; 𝐼) → V(•; 𝐼 C 𝐼),

𝜑2 : V(•; 𝑁 ⊗ 𝑁) → V(•; 𝑁),
𝜑0 : V(•; 𝐼) → V(•; 𝑁).

Laxators, together with unitors and associators, must satisfy
coherence conditions (see Appendix, Definition I.5).

Definition 4.3 (Produoidal functor). Let V⊗,𝐼 ,C,𝑁 and
W�,𝐽 ,J,𝑀 be produoidal categories. A produoidal functor 𝐹

is a functor between the two categories 𝐹 : V(•, •) →W(•, •)
together with natural transformations

𝐹⊗ : V(𝐴; 𝐵 ⊗ 𝐶) →W(𝐹𝐴; 𝐹𝐵 � 𝐹𝐶),
𝐹𝐼 : V(𝐴; 𝐼) →W(𝐹𝐴; 𝐽),
𝐹C : V(𝐴; 𝐵 C 𝐶) →W(𝐹𝐴; 𝐹𝐵 J 𝐹𝐶), and
𝐹𝑁 : V(𝐴; 𝑁) →W(𝐹𝐴; 𝑀),

preserving coherence isomorphisms for each promonoidal
structure, and the laxators. Denote by Produo the category
of produoidal categories and produoidal functors.

4.2 Monoidal Contour of a Produoidal Category
Any produoidal category freely generates a monoidal cat-

egory, its monoidal contour. Again, this is interpreted as
a monoidal category tracking the processes of parallel and
sequential decomposition described by the produoidal cate-
gory. And again, the construction follows a pleasant geometric
pattern, where we follow the shape of the decomposition, now
in both the parallel and sequential dimensions.

Definition 4.4 (Monoidal contour). The contour of a pro-
duoidal category B is the monoidal category DB that has
two objects, 𝑋𝐿 (left-handed) and 𝑋𝑅 (right-handed), for
each object 𝑋 ∈ Bobj; and has arrows those that arise from
contouring both sequential and parallel decompositions of the
promonoidal category.

𝑎𝑎𝑎0 𝑎1 𝑎𝑎0 𝑎1𝑎1𝑎0𝑎

𝑎0

𝑎𝑎0

𝑎1

𝑎2

Fig. 9: Generators of the monoidal category of contours.

Specifically, it is freely presented by (i) a pair of morphisms
𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ DB(𝑋𝑅; 𝐴𝑅) for each morphism
𝑎 ∈ B(𝐴; 𝑋); (ii) a morphism 𝑎0 ∈ DB(𝐴𝐿; 𝐴𝑅), for each
sequential unit 𝑎 ∈ C(𝐴; 𝑁); (iii) a pair of morphisms 𝑎0 ∈
DB(𝐴𝐿; 𝐼) and 𝑎0 ∈ DB(𝐼; 𝐴𝑅), for each parallel unit 𝑎 ∈
B(𝐴; 𝐼); (iv) a triple of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈
DB(𝑋𝑅;𝑌 𝐿), 𝑎2 ∈ DB(𝑌𝑅; 𝐴𝑅) for each sequential split 𝑎 ∈
B(𝐴; 𝑋 C𝑌); and (v) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿 ⊗
𝑌 𝐿) and 𝑎1 ∈ DB(𝑋𝑅 ⊗ 𝑌𝑅; 𝐴𝑅) for each parallel split 𝑎 ∈
B(𝐴; 𝑋 ⊗ 𝑌), see Figure 9.

We impose the same equations as in the categorical contour
coming from the associator and unitor of the C structure; but
moreover, we impose the following new equations, coming
from the ⊗ structure: For each application of associativity,
𝛼(𝑎 #1 𝑏) = 𝑐 #2 𝑑, we impose the equations 𝑎0 # (𝑏0 ⊗ id) =
𝑐0 # (id ⊗ 𝑑0) and (𝑏1 ⊗ id) # 𝑎1 = (id ⊗ 𝑑1) # 𝑐1. These follow
from Figure 10.

For each application of unitality, 𝜆(𝑎 #1 𝑏) = 𝑐 = 𝜌(𝑑 #2 𝑒),
we impose the equations 𝑎0 # (𝑏0 ⊗ id) = 𝑐0 = 𝑑0 # (id ⊗ 𝑒0)
and (𝑏1 ⊗ id) # 𝑎1 = 𝑐1 = (id ⊗ 𝑒1) # 𝑑1. These follow from
Figure 11.

For each application of the laxator, 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓),
we impose the equation 𝑎0 # (𝑏0 ⊗ 𝑐0) = 𝑑0 # 𝑒0, the middle

𝑏𝑏0

𝑏1

𝑎𝑎0 𝑎1

𝑑

𝑑0 𝑑1

𝑐𝑐0 𝑐1

=

Fig. 10: Equation between contours from ⊗ associator.

𝑎𝑎0 𝑎1 𝑑𝑑0 𝑑1

=

𝑏 𝑏1𝑏0 𝑒 𝑒1𝑒0

𝑐𝑐0 𝑐1
=

Fig. 11: Equations from ⊗ unitor.

equation 𝑏1 ⊗ 𝑐1 = 𝑒1 # 𝑑1 # 𝑓0, and (𝑏2 ⊗ 𝑐2) # 𝑎1 = 𝑓1 # 𝑑2.
These follow Figure 12. We finally impose similar equations
for the rest of the laxators, see Definition D.1 for details.

𝑎𝑎0 𝑎1

𝑐

𝑐0

𝑐1

𝑐2𝑏𝑏0

𝑏1

𝑏2

𝑒𝑒0

𝑒1

𝑑𝑑0

𝑑1

𝑑2

𝑓

𝑓0

𝑓1

Fig. 12: Equations from the laxator 𝜓2.

Proposition 4.5. Monoidal contour extends to a functor D :
Produo→Mon.

Proof. See Appendix, Proposition D.2. �

4.3 Produoidal Category of Spliced Monoidal Arrows

Again, we want to go the other way around: given a
monoidal category, what is the produoidal category that tracks
decomposition of arrows in that monoidal category? This
subsection finds a right adjoint to the monoidal contour con-
struction: the produoidal category of spliced monoidal arrows.

Definition 4.6. Let (C, ⊗, 𝐼) be a monoidal category. The
produoidal category of spliced monoidal arrows, TC, has as
objects pairs of objects of C. It uses the following profunctors
to define sequential splits, parallel splits, sequential units,
parallel units and morphisms.

TC
(
𝐴
𝐵; 𝑋𝑌

)
= C(𝐴; 𝑋) × C(𝑌, 𝐵);

TC(𝐴𝐵; 𝑋𝑌 C 𝑋
′

𝑌 ′) = C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝐵);
TC(𝐴𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′) = C(𝐴; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′; 𝐵);

TC(𝐴𝐵; 𝑁) = C(𝐴; 𝐵);
TC(𝐴𝐵; 𝐼) = C(𝐴; 𝐼) × C(𝐼; 𝐵).

In other words, morphisms are pairs of arrows 𝑓 : 𝐴→ 𝑋 and
𝑔 : 𝑌 → 𝐵. sequential splits are triples of arrows 𝑓 : 𝐴 → 𝑋 ,
𝑔 : 𝑌 → 𝑋 ′ and ℎ : 𝑌 ′→ 𝐵. Parallel splits are pairs of arrows
𝑓 : 𝐴→ 𝑋⊗𝑋 ′ and 𝑔 : 𝑌⊗𝑌 ′→ 𝐵. Sequential units are arrows

𝑓 : 𝐴 → 𝐵. parallel units are pairs of arrows 𝑓 : 𝐴 → 𝐼 and
𝑔 : 𝐼 → 𝐵. In summary, we have

morphisms, 𝑓 # � # 𝑔 ∈ TC
(
𝐴
𝐵; 𝑋𝑌

)
;

sequential splits, 𝑓 # � # 𝑔 # � # ℎ ∈ TC
(
𝐴
𝐵; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
;

parallel splits, 𝑓 # (� ⊗ �) # ℎ ∈ TC
(
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
;

sequential units, 𝑓 ∈ TC
(
𝐴
𝐵; 𝑁

)
.

and parallel units, 𝑓 ‖ 𝑔 ∈ TC
(
𝐴
𝐵; 𝐼

)
.

Finally, the laxators unite two different connections between
two gaps into a single one. For instance, the last laxator takes
parallel sequences of holes,

𝑓0 # ((ℎ0 # � # ℎ1 # � # ℎ2) ⊗ (𝑘0 # � # 𝑘1 # � # 𝑘2)) # 𝑓1

into sequences of parallel holes,

𝑓0 # (ℎ0 ⊗ 𝑘0) # (� ⊗ �) # (ℎ1 ⊗ 𝑘1) # (� ⊗ �) # (ℎ2 ⊗ 𝑘2) # 𝑓1.

See Appendix, Section D.2 for details.

Proposition 4.7. Spliced monoidal arrows form a produoidal
category with their sequential and parallel splits, units, and
suitable coherence morphisms and laxators.

Proof. See Appendix, Proposition D.3. �

Proposition 4.8. Spliced monoidal arrows extends to a functor
T : Mon→ Produo.

Proof. See Appendix, Proposition D.8. �

As in the categorical case, spliced monoidal arrows and
monoidal contour again form an adjunction. This adjunction
characterizes spliced monoidal arrows as a cofree construction.

Theorem 4.9. There exists an adjunction between monoidal
categories and produoidal categories, where the monoidal
contour is the left adjoint, and the produoidal splice category
is the right adjoint.

Proof. See Appendix, Theorem D.9. �

4.4 Representable Parallel Structure
A produoidal category has two tensors, and neither is,

in principle, representable. However, the cofree produoidal
category over a category we have just constructed happens also
to have a representable tensor, (⊗). Spliced monoidal arrows
form a monoidal category.

Proposition 4.10. Parallel splits and parallel units of spliced
monoidal arrows are representable profunctors. Explicitly,

TC
(
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� TC

(
𝐴
𝐵; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
, and TC

(
𝐴
𝐵; 𝐼

)
� TC

(
𝐴
𝐵; 𝐼𝐼

)
.

In fact, these sets are equal by definition. However, there
is a good reason to work in the full generality of produoidal
categories: every produoidal category, representable or not, has
an associated normal produoidal category, which may be again
representable or not. Normalization is a canonical procedure
to mix both tensors, (⊗) and (⊳); and it will allow us to
write monoidal contexts in Section 6, which form a produoidal
category without representable structure.

Remark 4.11. This means TC has the structure of a virtual
duoidal category [Shu17] or monoidal multicategory, defined
by Aguiar, Haim and López Franco [AHLF18] as a pseu-
domonoid in the cartesian monoidal 2-category of multicat-
egories.

5 Interlude: Normalization

Produoidal categories seem to contain too much structure:
of course, we want to split things in two different ways, se-
quentially (C) and in parallel (⊗); but that does not necessarily
mean that we want to keep track of two different types of units,
parallel (𝐼) and sequential (𝑁). The atomic components of our
decomposition algebra should be the same, without having to
care if they are atomic for sequential composition or atomic
for parallel composition.

Fortunately, there exists an abstract procedure that, starting
from any produoidal category, constructs a new produoidal
category where both units are identified. This procedure is
known as normalization, and the resulting produoidal cate-
gories are called normal.

Definition 5.1 (Normal produoidal category). A normal pro-
duoidal category is a produoidal category where the laxator
𝜑0 : V(•; 𝐼) → V(•; 𝑁) is an isomorphism.

Normal produoidal categories form a category nProduo
with produoidal functors between them and endowed with fully
faithful forgetful functor U : nProduo→ Produo.

Theorem 5.2. Let V⊗,𝐼 ,C,𝑁 be a produoidal category. The
profunctor NV(•; •) = V(•; 𝑁 ⊗ • ⊗ 𝑁) forms a promonad.
Moreover, the Kleisli category of this promonad is a normal
produoidal category with the following splits and units.

NV(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁);
NV(𝐴; 𝐵 ⊗𝑁 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁);
NV(𝐴; 𝐵 C𝑁 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵 ⊗ 𝑁) C (𝑁 ⊗ 𝐶 ⊗ 𝑁));

NV(𝐴; 𝐼𝑁) = V(𝐴; 𝑁);
NV(𝐴; 𝑁𝑁) = V(𝐴; 𝑁).

Proof. See Appendix, Theorem E.1. �

A normalization procedure for duoidal categories was given
by Garner and López Franco [GF16]; our contribution is its
produoidal counterpart. This novel produoidal normalization
is better behaved than the duoidal one [GF16]: the latter
does not always exist, but we show produoidal normalization
does. Indeed, we prove that produoidal normalization forms an
idempotent monad. The technical reason for this improvement
is that the original required the existence of certain coequal-
izers in V; produoidal normalization uses coequalizers in Set.
Appendix E.3 outlines a relation between the two procedures.

Theorem 5.3. Normalization extends to an idempotent monad.

Proof. See Appendix, Theorem E.3. �

Theorem 5.4 (Free normal produoidal). Normalization de-
termines an adjunction between produoidal categories and

normal produoidal categories, N : Produo
 nProduo : U.

That is, NV is the free produoidal category over V.

Proof. See Appendix, Theorem E.5. �

In the previous Section 4, we constructed the produoidal
category of spliced monoidal arrows, which distinguishes be-
tween morphisms and morphisms with a hole in the monoidal
unit. This is because the latter hole splits the morphism in two
parts. Normalization equates both; it sews these two parts.
In Section 6, we explicitly construct monoidal contexts, the
normalization of spliced monoidal arrows.

5.1 Symmetric Normalization
Normalization is a generic procedure that applies to any

produoidal category, it does not matter if the parallel split
(⊗) is symmetric or not. However, when ⊗ happens to be
symmetric, we can also apply a more specialized normalization
procedure.

Definition 5.5 (Symmetric produoidal category). A symme-
tric produoidal category is a produoidal category VC,𝑁 ,⊗,𝐼
endowed with a natural isomorphism 𝜎 : V(𝐴; 𝐵 ⊗ 𝐶) �
V(𝐴;𝐶 ⊗ 𝐵) satisfying the symmetry and hexagon equations.

Theorem 5.6. Let V⊗,𝐼 ,C,𝑁 be a symmetric produoidal cat-
egory. The profunctor N 𝜎V(•; •) = V(•; 𝑁 ⊗ •) forms a
promonad. Moreover, the Kleisli category of this promonad
is a normal symmetric produoidal category with the following
splits and units.

N 𝜎V(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵);
N 𝜎V(𝐴; 𝐵 ⊗𝑁 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝐶);
N 𝜎V(𝐴; 𝐵 C𝑁 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵) C (𝑁 ⊗ 𝐶));

N 𝜎V(𝐴; 𝐼𝑁) = V(𝐴; 𝑁);
N 𝜎V(𝐴; 𝑁𝑁) = V(𝐴; 𝑁).

Proof. See Appendix, Theorem E.6. �

Theorem 5.7. Normalization determines an adjunction be-
tween symmetric produoidal and normal symmetric produoidal
categories, N 𝜎 : SymProduo
 nSymProduo : U . That is,
N 𝜎V is the free symmetric produoidal category over V.

Proof. See Appendix, Theorem E.11. �

6 Monoidal Context: Mixing C and ⊗ by normalization

Monoidal contexts formalize the notion of an incomplete
morphism in a monoidal category. The category of monoidal
contexts will have a rich algebraic structure: we shall be able
to still compose contexts sequentially and in parallel and, at
the same time, we shall be able to fill a context using another
monoidal context. Perhaps surprisingly, then, the category of
monoidal contexts is not even monoidal.

We justify this apparent contradiction in terms of profunc-
torial structure: the category is not monoidal, but it does have
two promonoidal structures that precisely represent sequential
and parallel composition. These structures form a normal

produoidal category. In fact, we show it to be the normalization
of the produoidal category of spliced monoidal arrows.

This section constructs explicitly the normal produoidal
category of monoidal contexts.

6.1 The Category of Monoidal Contexts
A monoidal context,MC

(
𝐴
𝐵 ; 𝑋𝑌

)
, represents a process from

𝐴 to 𝐵 with a hole admitting a process from 𝑋 to 𝑌 . In
this sense, monoidal contexts are similar to spliced monoidal
arrows. The difference with spliced monoidal arrows is that
monoidal contexts allow for communication to happen to the
left and to the right of this hole.

Definition 6.1 (Monoidal context). Let (C, ⊗, 𝐼) be a monoidal
category. Monoidal contexts are the elements of the following
profunctor,

MC
(
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2) �C(•1 ⊗ 𝑌 ⊗ •2; 𝐵).

In other words, a monoidal context from 𝐴 to 𝐵, with a hole
from 𝑋 to 𝑌 , is an equivalence class consisting of a pair of
objects 𝑀, 𝑁 ∈ Cobj and a pair of morphisms 𝑓 ∈ C(𝐴; 𝑀 ⊗
𝑋 ⊗ 𝑁) and 𝑔 ∈ C(𝑀 ⊗ 𝑌 ⊗ 𝑁; 𝐵), quotiented by dinaturality
of 𝑀 and 𝑁 (Figure 13). We write monoidal contexts as

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ∈ MC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

In this notation, dinaturality explicitly means that

(𝑓 # (𝑚 ⊗ id𝑋 ⊗ 𝑛) # (id𝑊 ⊗ � ⊗ id𝐻) # 𝑔) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # (𝑚 ⊗ id𝑌 ⊗ 𝑛) # 𝑔).

𝑓

𝑔

=
𝑚 𝑛

𝑓

𝑔

𝑚 𝑛

Fig. 13: Dinaturality for monoidal contexts.

Proposition 6.2. Monoidal contexts form a category.

Proof. We define composition of monoidal contexts by the
following formula (illustrated in Figure 29, iii).

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (ℎ # (id𝑀 ′ ⊗ � ⊗ id𝑁 ′) # 𝑘) =

𝑓 # (id𝑀 ⊗ ℎ ⊗ id𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ � ⊗ id𝑁 ⊗𝑁 ′)
(id𝑀 ⊗ 𝑘 ⊗ id𝑁) # 𝑔

For each pair of objects, we define the identity monoidal
context as id𝐴 #� # id𝐵 (illustrated in Figure 29, ii). We check
that this composition is associative and unital in the Appendix,
Proposition F.3. �

Remark 6.3. Even when we introduce (id ⊗ � ⊗ id) as a
piece of suggestive notation, we can still write (𝑔 ⊗ � ⊗ ℎ)
unambiguously, because of dinaturality,

(𝑔 ⊗ id ⊗ ℎ) # (id ⊗ � ⊗ id) = (id ⊗ � ⊗ id) # (𝑔 ⊗ id ⊗ ℎ).

;

𝑓

𝑔

;

𝑓

𝑔

ℎ

; 𝑓

𝑓

𝑔

;

Fig. 14: Morphisms, sequential and parallel splits, and units
of the splice monoidal arrow produoidal category.

6.2 The Normal Produoidal Algebra of Monoidal Contexts

Let us endow monoidal contexts with their normal pro-
duoidal structure.

Definition 6.4. The category of monoidal contexts, MC,
has as objects pairs of objects of C. We use the following
profunctors to define sequential splits, parallel splits, units and
morphisms.

MC
(
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2) �C(•1 ⊗ 𝑌 ⊗ •2; 𝐵);

MC
(
𝐴
𝐵 ; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2) �
C(•1 ⊗ 𝑌 ⊗ •2; •3 ⊗ 𝑋 ′ ⊗ •4) �
C(•3 ⊗ 𝑌 ′ ⊗ •4; 𝐵);

MC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ •2 ⊗ 𝑋 ′ ⊗ •3) �
C(•1 ⊗ 𝑌 ⊗ •2 ⊗ 𝑌 ′ ⊗ •3; 𝐵);

MC
(
𝐴
𝐵 ; 𝑁

)
= C(𝐴; 𝐵).

In other words, sequential splits are triples of arrows
𝑓 : 𝐴 → 𝑀 ⊗ 𝑋 ⊗ 𝑁 , 𝑔 : 𝑀 ⊗ 𝑌 ⊗ 𝑁 → 𝑀 ′ ⊗ 𝑋 ′ ⊗ 𝑁 ′

and ℎ : 𝑀 ′ ⊗ 𝑌 ′ ⊗ 𝑁 ′ → 𝐵, quotiented by dinaturality of
𝑀, 𝑀 ′, 𝑁, 𝑁 ′. Parallel splits are pairs of arrows 𝑓 : 𝐴 →
𝑀 ⊗ 𝑋 ⊗ 𝑁 ⊗ 𝑋 ′ ⊗ 𝑂 and 𝑔 : 𝑀 ⊗ 𝑌 ⊗ 𝑁 ⊗ 𝑌 ′ ⊗ 𝑂 → 𝐵,
quotiented by dinaturality of 𝑀, 𝑁,𝑂. Units are simply arrows
𝑓 : 𝐴→ 𝐵. In summary, we have

morphisms, 𝑓 # (id ⊗ � ⊗ id) # 𝑔
sequential splits, 𝑓 # (id ⊗ � ⊗ id) # 𝑔 # (id ⊗ � ⊗ id) # ℎ;
parallel splits, 𝑓 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑔;
sequential units, 𝑓 .

Dinaturality for sequential splits and parallel splits is de-
picted the Appendix, Figures 30 and 31.

Proposition 6.5. The category of monoidal contexts forms
a normal produoidal category with its units, sequential and
parallel splits.

Proof. See Appendix, Proposition F.4. �

Theorem 6.6. Monoidal contexts are the free normalization
of the cofree produoidal category over a category. In other
words, monoidal contexts are the normalization of spliced
monoidal arrows, NTC �MC.

Proof. See Appendix, Theorem F.12. �

7 Monoidal Lenses

Monoidal lenses are symmetric monoidal contexts. Again,
the category of monoidal lenses has a rich algebraic structure;
and again, most of this structure exists only virtually in terms
of profunctors. In this case, though, the monoidal tensor does
indeed exist: contrary to monoidal contexts, monoidal lenses
form also a monoidal category.

This is perhaps why applications of monoidal lenses have
grown popular in recent years [Ril18], with applications in
decision theory [GHWZ18], supervised learning [CGG+22],
[FJ19] and most notably in functional data accessing [Kme12],
[PGW17], [BG18], [CEG+20]. The promonoidal structure of
optics was ignored, even when, after now identifying for the
first time its relation to the monoidal structure of optics, we
argue that it could be potentially useful in these applications:
e.g. in multi-stage decision problems, or in multi-stage data
accessors.

This section explicitly constructs the normal symmetric
produoidal category of monoidal lenses. We describe it for
the first time by a universal property: it is the free symmetric
normalization of the cofree produoidal category.

7.1 The Category of Monoidal Lenses

A monoidal lens of type LC(𝐴𝐵, 𝑋𝑌) represents a process in a
symmetric monoidal category with a hole admitting a process
from 𝑋 to 𝑌 .

𝑓

𝑔

;

𝑓

𝑔

;

𝑓

ℎ

;𝑔

Fig. 15: Generic monoidal lens, sequential and parallel split.

Definition 7.1 (Monoidal Lens). Let (C, ⊗, 𝐼) be a symmetric
monoidal category. Monoidal lenses are the elements of the
following profunctor,

LC
(
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; • ⊗ 𝑋) �C(• ⊗ 𝑌 ; 𝐵).

In other words, a monoidal lens from 𝐴 to 𝐵, with a hole
from 𝑋 to 𝑌 , is an equivalence class consisting of a pair of
objects 𝑀, 𝑁 ∈ Cobj and a pair of morphisms 𝑓 ∈ C(𝐴; 𝑀⊗𝑋)
and 𝑔 ∈ C(𝑀 ⊗ 𝑌 ; 𝐵), quotiented by dinaturality of 𝑀 . We
write monoidal lenses as

𝑓 # (id𝑀 ⊗ �) # 𝑔 ∈ LC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

Proposition 7.2. Monoidal lenses form a normal symmetric
produoidal category with the following morphisms, units,
sequential and parallel splits.

LC
(
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; • ⊗ 𝑋) �C(• ⊗ 𝑌 ; 𝐵);

LC
(
𝐴
𝐵 ; 𝑁

)
= C(𝐴; 𝐵);

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋) �
C(•1 ⊗ 𝑌 ; •2 ⊗ 𝑋 ′) �C(•2 ⊗ 𝑌 ′; 𝐵);

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ 𝑋 ′) �C(•1 ⊗ 𝑌 ⊗ 𝑌 ′; 𝐵).

Proof. See Appendix, Proposition G.1. �

Theorem 7.3. Monoidal lenses are the free symmetric nor-
malization of the cofree symmetric produoidal category over
a monoidal category.

Proof. See Appendix, Theorem G.9. �

Remark 7.4 (Representable parallel structure). The parallel
splitting structure of monoidal lenses is representable,

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= LC

(
𝐴
𝐵 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
.

Lenses over a symmetric monoidal category are known to be
monoidal [Ril18], [Hed17], but it remained unexplained why a
similar structure was not present in non-symmetric lenses. The
contradiction can be solved by noting that both symmetric and
non-symmetric lenses are indeed promonoidal, even if only
symmetric optics provide a representable tensor.
Remark 7.5 (Session notation for lenses). We will write !𝐴 =(
𝐴
𝐼

)
and ?𝐵 =

(
𝐼
𝐵

)
for the objects of the produoidal category of

lenses that have a monoidal unit as one of its objects. These
are enough to express all objects because !𝐴 ⊗ ?𝐵 =

(
𝐴
𝐵

)
; and,

moreover, they satisfy the following properties definitionally.

C(•; ?𝐴 ⊳ ?𝐵) � C(•; ?𝐴 ⊗ ?𝐵); !(𝐴 ⊗ 𝐵) = !𝐴 ⊗ !𝐵;
C(•; !𝐴 ⊳ !𝐵) � C(•; !𝐴 ⊗ !𝐵); ?(𝐴 ⊗ 𝐵) = ?𝐴 ⊗ ?𝐵;
C(•; !𝐴 ⊳ ?𝐵) � C(•; !𝐴 ⊗ ?𝐵).

Proposition 7.6. Let (C, ⊗, 𝐼) be a symmetric monoidal cat-
egory. There exist monoidal functors (!) : C → LC and
(?) : C𝑜𝑝 → LC.

Proof. See Appendix, Proposition G.7. �

7.2 Protocol Analysis
Let us go back to our running example (Figure 1). We can

now declare that the client and server have the following types,
representing the order in which they communicate,

∈ LC
(
Client
Client ; !Msg ⊳ ?Msg ⊳ !Msg

)
;

∈ LC
(
Server
Server ; ?Msg ⊳ !Msg ⊳ ?Msg

)
.

Moreover, we can use the duoidal algebra to compose them.
Indeed, tensoring client and server, we get the following
codomain type,

(!Msg C ?Msg C !Msg) ⊗ (?Msg C !Msg C ?Msg).

We then apply the laxators to mix inputs and outputs, obtaining

(!Msg ⊗ ?Msg) C (?Msg ⊗ !Msg) C (!Msg ⊗ ?Msg),

and we finally apply the unitors to fill the communication holes
with noisy channels.

𝜓2

(
⊗

)
≺3
𝜆 NOISE

3 ∈ LC
(
Client⊗Server
Client⊗Server

)
.

We end up obtaining the protocol as a single morphism
Client⊗Server→ Client⊗Server in whatever category we are
using to program. Assuming the category of finite stochastic
maps, this single morphism represents the distribution over the
possible outcomes of the protocol. Finally, by dinaturality, we
can reason over independent parts of the protocol.

Proposition 7.7. Let () = (SYN#(id⊗�)#ACK#(id⊗�)). The
equalities in Figure 1 are a consequence of the dinaturality of
a monoidal lens.

Proof. We recognize the diagram in Figure 1 as representing
the elements in the following equation.

SYN # (id ⊗ �) # ACK # (id ⊗ �) =

SYN∗ # (PRJ ⊗ id) # � # ACK # (id ⊗ �) =

SYN∗ # (id ⊗ �) # (PRJ ⊗ id) # ACK # (id ⊗ �) =

SYN∗ # (id ⊗ �) # ACK∗ # (id ⊗ �).

In the same way we would apply the interchange law in com-
pleted morphisms, we have applied dinaturality over PRJ. �

7.3 Cartesian Lenses
We have worked in full generality, but cartesian lenses

are particularly important to applications in game theory
[GHWZ18] and functional programming [Kme12], [PGW17].
We introduce their newly constructed produoidal structure.

Proposition 7.8 (Cartesian Lenses). Let (C, ·, 1) be a carte-
sian monoidal category. Its produoidal category of lenses is
given by the following profunctors.

LC
(
𝐴
𝐵; 𝑋𝑌

)
� C(𝐴; 𝑋) × C(𝐴𝑌 ; 𝐵),

LC
(
𝐴
𝐵; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
� C(𝐴; 𝑋) × C(𝐴𝑌 ; 𝑋 ′) × C(𝐴𝑌𝑌 ′; 𝐵),

LC
(
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� C(𝐴; 𝑋𝑋 ′) × C(𝐴𝑌𝑌 ′; 𝐵),

LC
(
𝐴
𝐵

)
� C(𝐴; 𝐵).

Proof. See Appendix, Proposition G.8. �

8 Conclusions
Monoidal contexts are an algebra of incomplete processes,

commonly generalizing lenses [Ril18] and spliced arrows
[MZ22]. In the same way that the 𝜋-calculus allows in-
put/output channels of an abstract model of computation, mo-
noidal contexts allow input/output communication on arbitrary
theories of processes, such as stochastic or partial functions,
quantum processes or relational queries.

Monoidal contexts form a normal produoidal category: a
highly structured and rich categorical algebra. Moreover, they
are the universal such algebra on a monoidal category. This

is good news for applications: the literature on concurrency is
rich in frameworks; but the lack of canonicity may get us con-
fused when trying to choose, design, or compare among them,
as Abramsky [Abr05] has pointed out. Precisely characterizing
the universal property of a model addresses this concern. This
is also good news for the category theorist: not only is this an
example shedding light on a relatively obscure structure; it is
a paradigmatic such one.

We rely on two mathematical ideas: monoidal and duoidal
categories on one hand, and dinaturality and profunctorial
structures on the other. Monoidal categories, which could be
accidentally dismissed as a toy version of cartesian categories,
show that their string diagrams can bootstrap our conceptual
understanding of new fundamental process structures, while
keeping an abstraction over their implementation that cartesian
categories cannot afford. Duoidal categories are such an exam-
ple: starting to appear insistently in computer science [SS22],
[HS23], they capture the posetal structure of process depen-
dency and communication. Dinaturality, virtual structures and
profunctors, even if sometimes judged arcane, show again that
they can canonically capture a notion as concrete as process
composition.

8.1 Further Work
Dependencies. Shapiro and Spivak [SS22] prove that nor-

mal symmetric duoidal categories with certain limits addi-
tionally have the structure of dependence categories: they
can not only express dependence structures generated by (C)
and (⊗), but arbitrary poset-mediated dependence structures.
Produoidal categories are better behaved: the limits always
exist, and we only require these are preserved by the coend.

Proposition 8.1. Let V be a normal and ⊗-symmetric pro-
duoidal category with coends over V commuting with finite
connected limits. Then, [Vop, Set] is a dependence category
in the sense of Shapiro and Spivak [SS22].

Proof sketch. See Appendix, Theorem H.1. �

Weakening dependence categories in this way combines the
ideas of Shapiro and Spivak [SS22] with those of Hefford and
Kissinger [HK22], who employ virtual objects to deal with the
non-existence of tensor products in models of spacetime.

Language theory. Melliès and Zeilberger [MZ22] used
a multicategorical form of splice-contour adjunction (Re-
mark 3.3) to give a novel proof of the Chomsky-Schüt-
zenberger representation theorem, generalized to context-free
languages in categories. Our produoidal splice-contour adjunc-
tion (Section 4), combined with recent work on languages
of morphisms in monoidal categories [ES22] opens the way
for a vertical categorification of the Chomsky-Schützenberger
theorem, which we plan to elaborate in future work.

String diagrams for concurrency. Nester et al. [Nes23],
[BNR22] have recently introduced an alternative description of
lenses in terms of proarrow equipments, which have a good 2-
dimensional syntax [Mye16] we can use for send/receive types
(!/?). We have shown how this structure arises universally in

symmetric monoidal categories. It remains as further work
to determine a good 2-dimensional syntax for concurrent
programs with iteration and internal/external choice.

9 Acknowledgements

We thank Pawel Sobocinski, Fosco Loregian, Chad Nester
and David Spivak for discussion.

Matt Earnshaw and Mario Román were supported by the
European Social Fund Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001). James Hefford is supported
by University College London and the EPSRC [grant number
EP/L015242/1].

References

[Abr05] Samson Abramsky. What are the fundamental structures of con-
currency?: We still don’t know! In Luca Aceto and Andrew D.
Gordon, editors, Proceedings of the Workshop "Essays on Al-
gebraic Process Calculi", APC 25, Bertinoro, Italy, August 1-5,
2005, volume 162 of Electronic Notes in Theoretical Computer
Science, pages 37–41. Elsevier, 2005.

[AC09] Samson Abramsky and Bob Coecke. Categorical quantum
mechanics. In Kurt Engesser, Dov M. Gabbay, and Daniel
Lehmann, editors, Handbook of Quantum Logic and Quantum
Structures, pages 261–323. Elsevier, Amsterdam, 2009.

[AHLF18] Marcelo Aguiar, Mariana Haim, and Ignacio López Franco.
Monads on higher monoidal categories. Applied Categorical
Structures, 26(3):413–458, Jun 2018.

[AM10] Marcelo Aguiar and Swapneel Arvind Mahajan. Monoidal
functors, species and Hopf algebras, volume 29. American
Mathematical Society Providence, RI, 2010.

[BDSPV15] Bruce Bartlett, Christopher L. Douglas, Christopher J.
Schommer-Pries, and Jamie Vicary. Modular categories as
representations of the 3-dimensional bordism 2-category, 2015.

[Bén00] Jean Bénabou. Distributors at work. Lecture notes written by
Thomas Streicher, 11, 2000.

[BG18] Guillaume Boisseau and Jeremy Gibbons. What you needa
know about yoneda: Profunctor optics and the yoneda lemma
(functional pearl). Proceedings of the ACM on Programming
Languages, 2(ICFP):1–27, 2018.

[BNR22] Guillaume Boisseau, Chad Nester, and Mario Román. Cornering
optics. volume abs/2205.00842, 2022.

[BPSZ19] Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio
Zanasi. Graphical affine algebra. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancou-
ver, BC, Canada, June 24-27, 2019, pages 1–12. IEEE, 2019.

[BS13] Thomas Booker and Ross Street. Tannaka duality and con-
volution for duoidal categories. Theory and Applications of
Categories, 28(6):166–205, 2013.

[BSS18] Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical
conjunctive queries. In Dan R. Ghica and Achim Jung, editors,
27th EACSL Annual Conference on Computer Science Logic,
CSL 2018, September 4-7, 2018, Birmingham, UK, volume
119 of LIPIcs, pages 13:1–13:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[CEG+20] Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn,
Bartosz Milewski, Emily Pillmore, and Mario Román. Profunc-
tor optics, a categorical update. CoRR, abs/2001.07488, 2020.

[CFS16] Bob Coecke, Tobias Fritz, and Robert W. Spekkens. A mathe-
matical theory of resources. Inf. Comput., 250:59–86, 2016.

[CGG+22] Geoffrey S. H. Cruttwell, Bruno Gavranović, Neil Ghani, Paul
Wilson, and Fabio Zanasi. Categorical foundations of gradient-
based learning. In European Symposium on Programming, pages
1–28. Springer, Cham, 2022.

[CJ19] Kenta Cho and Bart Jacobs. Disintegration and Bayesian
Inversion via String Diagrams. Mathematical Structures in
Computer Science, pages 1–34, March 2019.

[CL02] J. Robin B. Cockett and Stephen Lack. Restriction categories
I: categories of partial maps. Theoretical Computer Science,
270(1-2):223–259, 2002.

[CP09] J. Robin B. Cockett and Craig A. Pastro. The logic of message-
passing. Sci. Comput. Program., 74(8):498–533, 2009.

[CS97] J. Robin B. Cockett and Robert A. G. Seely. Weakly distributive
categories. Journal of Pure and Applied Algebra, 114(2):133–
173, 1997.

[CS10] G.S.H. Cruttwell and Michael A. Shulman. A unified framework
for generalized multicategories. Theory and Applications of
Categories, 24:580–655, 2010.

[Day70a] Brian Day. Construction of Biclosed Categories. PhD thesis,
University of New South Wales, 1970.

[Day70b] Brian Day. On closed categories of functors. In Reports of the
Midwest Category Seminar IV, volume 137, pages 1–38, Berlin,
Heidelberg, 1970. Springer Berlin Heidelberg.

[DLdFR22] Elena Di Lavore, Giovanni de Felice, and Mario Román. Mo-
noidal streams for dataflow programming. In Proceedings of
the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[ES22] Matthew Earnshaw and Pawel Sobociński. Regular Monoidal
Languages. In Stefan Szeider, Robert Ganian, and Alexandra
Silva, editors, 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), volume 241
of Leibniz International Proceedings in Informatics (LIPIcs),
pages 44:1–44:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-
update problem. ACM Transactions on Programming Languages
and Systems (TOPLAS), 29(3):17–es, 2007.

[FJ19] Brendan Fong and Michael Johnson. Lenses and learners. arXiv
preprint arXiv:1903.03671, 2019.

[Fri20] Tobias Fritz. A synthetic approach to Markov kernels, condi-
tional independence and theorems on sufficient statistics. Ad-
vances in Mathematics, 370:107239, 2020.

[GF16] Richard Garner and Ignacio López Franco. Commutativity.
Journal of Pure and Applied Algebra, 220(5):1707–1751, 2016.

[GH99] Simon J. Gay and Malcolm Hole. Types and subtypes for client-
server interactions. In S. Doaitse Swierstra, editor, Programming
Languages and Systems, 8th European Symposium on Program-
ming, ESOP’99, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’99, Amsterdam,
The Netherlands, 22-28 March, 1999, Proceedings, volume 1576
of Lecture Notes in Computer Science, pages 74–90. Springer,
1999.

[GHWZ18] Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn.
Compositional game theory. In Anuj Dawar and Erich Grädel,
editors, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 472–481. ACM, 2018.

[Gui80] René Guitart. Tenseurs et machines. Cahiers de topologie et
géométrie différentielle catégoriques, 21(1):5–62, 1980.

[Has97] Masahito Hasegawa. Models of sharing graphs: a categorical
semantics of let and letrec. PhD thesis, University of Edinburgh,
UK, 1997.

[HC22] James Hefford and Cole Comfort. Coend optics for quantum
combs. arXiv preprint arXiv:2205.09027, 2022.

[Hed17] Jules Hedges. Coherence for lenses and open games. arXiv
preprint arXiv:1704.02230, 2017.

[HK22] James Hefford and Aleks Kissinger. On the pre- and promo-
noidal structure of spacetime. arXiv preprint arXiv.2206.09678,
2022.

[HLV+16] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires,
Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca
Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira,
and Gianluigi Zavattaro. Foundations of session types and
behavioural contracts. ACM Comput. Surv., 49(1):3:1–3:36,
2016.

[Hon93] Kohei Honda. Types for dyadic interaction. In Eike Best, editor,
CONCUR ’93, 4th International Conference on Concurrency
Theory, Hildesheim, Germany, August 23-26, 1993, Proceed-
ings, volume 715 of Lecture Notes in Computer Science, pages
509–523. Springer, 1993.

[HS23] Chris Heunen and Jesse Sigal. Duoidally enriched Freyd
categories. arXiv preprint arXiv:2301.05162, 2023.

[Hug00] John Hughes. Generalising monads to arrows. Science of
Computer Programming, 37(1-3):67–111, 2000.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multi-
party asynchronous session types. In George C. Necula and
Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12,
2008, pages 273–284. ACM, 2008.

[JRW12] Michael Johnson, Robert Rosebrugh, and Richard J. Wood.
Lenses, fibrations and universal translations. Mathematical
structures in computer science, 22(1):25–42, 2012.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus,
I. Advances in Mathematics, 88(1):55–112, 1991.

[Kme12] Edward Kmett. lens library, version 4.16. Hackage
https://hackage. haskell. org/package/lens-4.16, 2018, 2012.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner.
Linearity and the pi-calculus. In Hans-Juergen Boehm and
Guy L. Steele Jr., editors, Conference Record of POPL’96:
The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium,
St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages
358–371. ACM Press, 1996.

[KU17] Aleks Kissinger and Sander Uĳlen. A categorical semantics
for causal structure. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

[Lor21] Fosco Loregian. (Co)end Calculus. London Mathematical
Society Lecture Note Series. Cambridge University Press, 2021.

[Mac78] Saunders Mac Lane. Categories for the Working Mathematician.
Graduate Texts in Mathematics. Springer New York, 1978.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf.
Comput., 93(1):55–92, 1991.

[Mye16] David Jaz Myers. String diagrams for double categories and
equipments, 2016.

[MZ22] Paul-André Melliès and Noam Zeilberger. Parsing as a Lift-
ing Problem and the Chomsky-Schützenberger Representation
Theorem. In MFPS 2022-38th conference on Mathematical
Foundations for Programming Semantics, 2022.

[Nes23] Chad Nester. Concurrent Process Histories and Resource Trans-
ducers. Logical Methods in Computer Science, Volume 19, Issue
1, January 2023.

[NS22] Nelson Niu and David I. Spivak. Polynomial functors: A general
theory of interaction. In preparation, 2022.

[Pat01] Ross Paterson. A new notation for arrows. In Benjamin C.
Pierce, editor, Proceedings of the Sixth ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’01),
Firenze (Florence), Italy, September 3-5, 2001, pages 229–240.
ACM, 2001.

[PGW17] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunc-
tor optics: Modular data accessors. Art Sci. Eng. Program.,
1(2):7, 2017.

[Pos81] J. Postel. Transmission control protocol. RFC 793, RFC Editor,
9 1981.

[PS93] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping
for mobile processes. In Proceedings of the Eighth Annual
Symposium on Logic in Computer Science (LICS ’93), Montreal,
Canada, June 19-23, 1993, pages 376–385. IEEE Computer
Society, 1993.

[PS07] Craig Pastro and Ross Street. Doubles for Monoidal Categories.
arXiv preprint arXiv:0711.1859, 2007.

[PSV21] Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring
diagrams as normal forms for computing in symmetric monoidal
categories. Electronic Proceedings in Theoretical Computer
Science, page 49–64, Feb 2021.

[Ril18] Mitchell Riley. Categories of Optics. arXiv preprint
arXiv:1809.00738, 2018.

[Rom20] Mario Román. Comb Diagrams for Discrete-Time Feedback.
CoRR, abs/2003.06214, 2020.

[Rom21] Mario Román. Open diagrams via coend calculus. Electronic
Proceedings in Theoretical Computer Science, 333:65–78, Feb
2021.

[Rom22] Mario Román. Promonads and string diagrams for effectful
categories. In ACT ’22: Applied Category Theory, Glasgow,
United Kingdom, 18 - 22 July, 2022, volume abs/2205.07664,
2022.

[Shu16] Michael Shulman. Categorical logic from a categorical point of
view. Available on the web, 2016.

[Shu17] Michael Shulman. Duoidal category (nlab entry), section 2.,
2017. https://ncatlab.org/nlab/show/duoidal+category, Last ac-
cessed on 2022-12-14.

[Spi13] David I. Spivak. The operad of wiring diagrams: formalizing a
graphical language for databases, recursion, and plug-and-play
circuits. CoRR, abs/1305.0297, 2013.

[SS22] Brandon T. Shapiro and David I. Spivak. Duoidal structures for
compositional dependence. arXiv preprint arXiv:2210.01962,
2022.

[SSV20] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou.
Dynamical systems and sheaves. Applied Categorical Structures,
28(1):1–57, 2020.

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory
of mobile processes. Cambridge University Press, 2001.

[VC22] André Videla and Matteo Capucci. Lenses for composable
servers. CoRR, abs/2203.15633, 2022.

https://ncatlab.org/nlab/show/duoidal+category

Appendix A
Introduction

A.1 Three Way handshake Implementation
The following can be interpreted as pseudocode using the linear type theory of symmetric monoidal

categories [Shu16]. The type theory of symmetric monoidal categories (Section A.1) uses declarations
such as (x , y) <- f(a, b, c) to represent morphisms such as 𝑓 : 𝐴 ⊗ 𝐵 ⊗ 𝐶 → 𝑋 ⊗ 𝑌 .

Gen
𝑓 ∈ G(𝐴1, . . . , 𝐴𝑛; 𝐵) Γ1 ` 𝑥1 : 𝐴1 . . . Γ𝑛 ` 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛) ` 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝐵

Pair
Γ1 ` 𝑥1 : 𝐴1 . . . Γ𝑛 ` 𝑥𝑛 : 𝐴𝑛

Shuf (Γ1, . . . , Γ𝑛) ` [𝑥1, ..., 𝑥𝑛] : 𝐴1 ⊗ ...⊗ 𝐴𝑛

Var

𝑥 : 𝐴 ` 𝑥 : 𝐴

Split
Δ ` 𝑚 : 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 Γ, 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ` 𝑧 : 𝐶

Shuf (Γ,Δ) ` [𝑥1, . . . , 𝑥𝑛] ← 𝑚 ; 𝑧 : 𝐶

Fig. 16: Type theory of symmetric monoidal categories [Shu16].

We can interpret pseudocode as talking about the type theory of monoidal categories. Usually, we will
need some extra structure: such as if-then-else or explicit functions. It has been found in programming
that a good level of concreteness for monoidal categories is given by the Kleisli categories of commutative
monads, sometimes abstracted by Freyd categories [Mog91], [Hug00], see [Rom22] for a comparison with
plain monoidal categories and string diagrams. For convenience, we assume this setting in the following
code, but note that it is not strictly necessary, and that a type-theoretic implementation of monoidal
categories would work just the same.

The following code inspired by Haskell’s do-notation [Hug00] and it has been tested in the Glasgow
Haskell Compiler, version 9.2.5.

syn :: Client ~> (Client, Syn, Ack)
syn(client) = do
client <- random
return (client, client, 0)

synack :: (Syn, Ack, Server) ~> (Syn, Ack, Server)
synack(syn, ack, server) = do
server <- random
return (if syn == 0 then (0,0,0) else (server, ack+1, server))

noise :: Noise -> (Syn, Ack) ~> (Syn, Ack)
noise k (syn,ack) = do
noise <- binomial k
return (if noise then (0,0) else (syn,ack))

ack :: (Client, Syn, Ack) ~> (Client, Syn, Ack)
ack(client, syn, ack) = do
return (if client+1 /= ack then (0,0,0) else (client+1, syn+1, client))

receive :: (Syn, Ack, Server) ~> Server
receive(syn, ack, server) = do
return (if server+1 /= ack then 0 else server)

We can use the produoidal category of lenses to provide a modular description of this protocol.
The programmer will not need to know about produoidal categories: they will be able to define splits of

a process; they will be able to read the type of the split in terms of the send-receive steps of the protocol;
they will be able to combine them, and the typechecker should produce an error whenever dinaturality
is not respected. In fact, in the following code, naively combining client and server in a way that does
not preserve dinaturality will produce a type error because GHC will not be able to match the types. We
present the description of the protocol, encoding send/receive types.

protocol ::
Split (Kleisli Distribution) Client Client
(Syn, Ack) -- !
(Syn, Ack) -- ?
(Syn, Ack) -- !
() -- ?

-> Split (Kleisli Distribution) Server Server
() -- !
(Syn, Ack) -- ?
(Syn, Ack) -- !
(Syn, Ack) -- ?

-> (Client, Server) ~> (Client, Server)
protocol
(Split (Kleisli client1) (Kleisli client2) (Kleisli client3))
(Split (Kleisli server1) (Kleisli server2) (Kleisli server3))
(client , server) = do
(server, ()) <- server1(server)
(client, (s,a)) <- client1(client)
(s, a) <- noise 0.1 (s,a)
(server, (s,a)) <- server2(server, (s,a))
(s, a) <- noise 0.1 (s,a)
(client, (s,a)) <- client2(client, (s,a))
(s, a) <- noise 0.1 (s,a)
(server) <- server3(server, (s,a))
(client) <- client3(client, ())
return (client, server)

The following Figure 17 and Figure 18 show the separate Haskell code for the client and server modules.

client :: Split (Kleisli Distribution) Client Client
(Syn, Ack) -- !
(Syn, Ack) -- ?
(Syn, Ack) -- !
() -- ?

client = Split {

-- Part 1: Send a SYN message.
part1 = Kleisli $ \client -> do

client <- pure 10
return (client, (client, 0))

-- Part 2: Receive ACK, send ACK.
, part2 = Kleisli $ \(client, (syn, ack)) -> do

return (if client+1 /= syn then (0,(0,0)) else (client, (client+1, ack+1)))

-- Part 3: Close protocol.
, part3 = Kleisli $ \(client, ()) -> do

return client

}

Fig. 17: Haskell code for the client module.

server :: Split (Kleisli Distribution) Server Server
() -- send ==>
(Syn, Ack) -- receive <==
(Syn, Ack) -- send ==>
(Syn, Ack) -- receive <==

server = Split

-- Part 1: Open protocol.
{ part1 = Kleisli $ \server -> do

return (server, ())

-- Part 2: Receive SYN and send ACK.
, part2 = Kleisli $ \(server, (syn, ack)) -> do

server <- pure 20
return (if syn == 0 then (0,(0,0)) else (server, (syn+1, server)))

-- Part 3: Receive ACK.
, part3 = Kleisli $ \(server, (syn, ack)) -> do

return (if server+1 /= ack then 0 else server)
}

Fig. 18: Code for the server module.

data Split c a b x y s t where
Split :: { part1 :: c a (m , x)

, part2 :: c (m , y) (n , s)
, part3 :: c (n , t) b
} -> Split c a b x y s t

data Unit c a b where
Unit :: { unit :: c a b } -> Unit c a b

data Context c a b x y where
Context :: { partA :: c a (m , x)

, partB :: c (m , y) (m , b)
} -> Context c a b x y

type (a ~> b) = (a -> Distribution b)

Fig. 19: Code describing the profunctors of monoidal lenses.

Appendix B
Profunctors and virtual structures

Definition B.1. A profunctor (𝑃, ≺, �) between two categories A and B, written 𝑃(•; •) : A� B, is a
family of sets 𝑃(𝐵; 𝐴) indexed by objects A and B, and endowed with jointly functorial left and right
actions of the morphisms of A and B, respectively [Bén00], [Lor21].

Explicitly, the types of these actions are (�) : B(𝐵′, 𝐵) × 𝑃(𝐵, 𝐴) → 𝑃(𝐵′, 𝐴), and (≺) : 𝑃(𝐵, 𝐴) ×
A(𝐴, 𝐴′) → 𝑃(𝐵, 𝐴′). These must
• satisfy compatibility, (𝑓 � 𝑝) ≺ 𝑔 = 𝑓 � (𝑝 ≺ 𝑔),
• preserve identities, 𝑖𝑑 � 𝑝 = 𝑝, and 𝑝 ≺ 𝑖𝑑 = 𝑝,
• and preserve compositions, (𝑝 ≺ 𝑓) ≺ 𝑔 = 𝑝 ≺ (𝑓 # 𝑔) and 𝑓 � (𝑔 � 𝑝) = (𝑓 # 𝑔) � 𝑝.

Remark B.2. More succinctly, a profunctor 𝑃 : A � B is a functor 𝑃 : Bop × A → Set. Analogously, a
profunctor 𝑃 : A� B is a functor 𝑃 : Aop ×B→ Set, or a profunctor 𝑃 : B� A.3 When presented as a
family of sets with a pair of actions, profunctors are sometimes called bimodules.

Theorem B.3 (Yoneda isomorphisms). Let C be a category. There exist bĳections between the following
sets defined by coends. These are natural in the copresheaf 𝐹 : C→ Set, the presheaf 𝐺 : Cop → Set and
𝐴 ∈ C, ∫ 𝑋

C(𝑋; 𝐴) × 𝐹 (𝑋)
𝑦1
� 𝐹 (𝐴);

∫ 𝑋

C(𝐴; 𝑋) × 𝐺 (𝑋)
𝑦2
� 𝐺 (𝐴);

and they are defined by 𝑦1 (𝑓 | 𝛼) = 𝐹 (𝑓) (𝛼) and 𝑦2 (𝑔 | 𝛽) = 𝐺 (𝑔) (𝛽). These are called Yoneda
reductions or Yoneda isomorphisms, because they appear in the proof of Yoneda lemma. Moreover, any
formal diagram constructed out of these reductions, products, identities and compositions commutes.

B.1 Promonads

Definition B.4. A promonad (𝑃,★, ◦) over a category C is a profunctor 𝑃 : C � C together with two
natural transformations representing inclusion (◦) : C(𝑋;𝑌) → 𝑃(𝑋;𝑌) and multiplication (★) : 𝑃(𝑋;𝑌) ×
𝑃(𝑌 ; 𝑍) → 𝑃(𝑋; 𝑍), and such that
• the left action is premultiplication, 𝑓 ◦ ★ 𝑝 = 𝑓 � 𝑝,
• the right action is postmultiplication, 𝑝 ★ 𝑓 ◦ = 𝑝 ≺ 𝑓 ,
• multiplication is dinatural, 𝑝 ★ (𝑓 � 𝑞) = (𝑝 ≺ 𝑓) ★ 𝑞,
• and multiplication is associative, (𝑝1 ★ 𝑝2) ★ 𝑝3 = 𝑝1 ★ (𝑝2 ★ 𝑝3).
Equivalently, promonads are monoids in the category of endoprofunctors. Every promonad induces a

category, its Kleisli category, with the same objects as the original C, but with hom-sets given by the
promonad, 𝑃(•; •). [Rom22]

B.2 Multicategories

Multicategories. We can explain promonoidal categories in terms of their better-known relatives:
multicategories. Multicategories can be used to describe (non-necessarily-coherent) decomposition. They
contain multimorphisms, 𝑋 → 𝑌0, . . . , 𝑌𝑛 that represent a way of decomposing an object 𝑋 into a list of
objects 𝑌0, . . . , 𝑌𝑛.

Definition B.5 (Multicategory). A multicategory is a category C endowed with a set of multimorphisms,
C(𝑋;𝑌0, . . . , 𝑌𝑛) for each list of objects 𝑋0, . . . , 𝑋𝑛, 𝑌 in Cobj, and a composition Figure 20 operation

(#)𝑛,𝑚
𝑌𝑘

: C(𝑋;𝑌0, . . . , 𝑌𝑛) × C(𝑌𝑖; 𝑍0, . . . , 𝑍𝑚) → C(𝑍;𝑌0, . . . , 𝑋0, . . . , 𝑋𝑚, . . . , 𝑌𝑚).

Composition is unital, meaning 𝑖𝑑𝑋𝑖
𝑓 = 𝑓 # 𝑖𝑑𝑌 for any 𝑓 making the equation formally well-typed.

Composition is also associative, meaning (ℎ #𝑔) # 𝑓 = ℎ # (𝑔 # 𝑓); and 𝑔 # (ℎ # 𝑓) = ℎ # (𝑔 # 𝑓) holds whenever
it is formally well-typed.

3Notation for profunctors conflicts in the literature. To side-step this problem, we use the symbols (�) and (�) , where ◦ marks
the contravariant (op) argument. This idea we take from Mike Shulman.

𝑓

· · · · · ·
𝑔#𝑛,𝑚

𝑌𝑘
= · · · · · ·

· · ·

𝑓

𝑔

𝑋

𝑌0 𝑌𝑛

𝑌𝑘

𝑍0 𝑍𝑚

Fig. 20: Multicategorical composition.

Proposition B.6. Multicategorical composition is dinatural on the object we are composing along. This is
to say that composition, (#)𝑛,𝑚

𝑘
, induces a well-defined and dinatural composition operation on the coend

the variable 𝑌𝑘 we are composing along.

(#)𝑛,𝑚•𝑘 :
(∫ 𝑌𝑘 ∈C

C(𝑋;𝑌0, . . . , 𝑌𝑛) × C(𝑌𝑘 ; 𝑍0, . . . , 𝑍𝑚)
)
→ C(𝑍;𝑌0, . . . , 𝑋0, . . . , 𝑋𝑚, . . . , 𝑌𝑚).

𝑓
𝑔#𝑛,𝑚

𝑌𝑘
ℎ

· · · · · ·

= 𝑓

· · · · · ·
𝑔

#𝑛,𝑚
𝑌𝑘

ℎ

Fig. 21: Multicategorical composition is dinatural.

Proof. This is a direct consequence of the associativity of composition for multicategories, inducing an
isomorphism. �

Remark B.7. A promonoidal category is a multicategory where dinatural composition is invertible.
Duomulticategories describe the interaction between two kinds of decomposition: a sequential one and

a parallel one. We can mix this two ways of decomposing: for instance, we can decompose 𝑋 sequentially
and then decompose each one of its factors in parallel, finally decompose the last one of these sequentially
again.

C(𝑋; (𝑌0 · 𝑌1), (𝑌2 · (𝑌3, 𝑌4))).

Definition B.8 (Duomulticategory). A duomulticategory is a category C endowed with a set of multi-
morphisms, C(𝑋; 𝐸 (𝑌0, . . . , 𝑌𝑛)), for each list of objects 𝑌0, . . . , 𝑌𝑛 in Cobj and each expression 𝐸 on two
monoids. Moreover, it is endowed with a dinatural composition operation

(#)𝑛,𝑚
𝑌𝑘

:
∫ 𝑌𝑖

C(𝑋; 𝐸1 [𝑌0, . . . , 𝑌𝑛]) × C(𝑌𝑖; 𝐸2 [𝑍0, . . . , 𝑍𝑚]) −→ C(𝑋; 𝐸1 [𝑌0, . . . , 𝐸2 [𝑋0, . . . , 𝑋𝑚], . . . , 𝑌𝑚),

and laxators relating sequential and parallel composition,

C(𝑋;𝐸1 [𝑌0, . . . , ((𝑍0, 𝑍1) · (𝑍2, 𝑍3)), . . . , 𝑌𝑛]) −→ C(𝑋; 𝐸1 [𝑌0, . . . , ((𝑍0 · 𝑍2), (𝑍1 · 𝑍3)), . . . , 𝑌𝑛]).

Remark B.9. In the same sense that a promonoidal category is a category where dinatural composition is
invertible in a specific sense, a produoidal category can be conjectured to be a duomulticategory where
dinatural composition is invertible, inducing an isomorphism.

Appendix C
Sequential Context

Proposition C.1 (From Proposition 3.2). Contour gives a functor C : Promon→ Cat.

Proof. Definition 3.1 defines the action on promonoidal categories. We define the action on promonoidal
functors. Given a promonoidal functor 𝐹 : V→ W, define the functor C𝐹 : CV→ CW by the following
morphism of presentations:

𝑋𝐿 ↦→ 𝐹 (𝑋)𝐿; 𝑋𝑅 ↦→ 𝐹 (𝑋)𝑅

for each 𝑎 ∈ V(𝐴; 𝑁), 𝑎0 : 𝐴𝐿 → 𝐴𝑅 ↦→ 𝐹𝑁 (𝑎)0
for each 𝑏 ∈ V(𝑋; 𝐵), 𝑏0 : 𝐵𝐿 → 𝑋𝐿 ↦→ 𝐹 (𝑏)0; 𝑏1 : 𝑋𝑅 → 𝐵𝑅 ↦→ 𝐹 (𝑏)1

for each 𝑐 ∈ V(𝐶;𝑌 C 𝑍), 𝑐0 : 𝐶𝐿 → 𝑌 𝐿 ↦→ 𝐹C (𝑐)0; 𝑐1 : 𝑌𝑅 → 𝑍𝐿 ↦→ 𝐹C (𝑐)1; 𝑐2 : 𝑍𝑅 → 𝐶𝑅 ↦→ 𝐹C (𝑐)2.
It follows from 𝐹 : V→W being a promonoidal functor that the contour equations of Definition 3.1 hold

between the images of generators, so this defines a functor. In particular when IdV : V→ V is an identity,
it is an identity functor. Let 𝐺 : U → V be another promonoidal functor, then C(𝐺 # 𝐹) = C(𝐺) # C(𝐹)
follows from the composition of promonoidal functors. �

Proposition C.2 (From Proposition 3.5). Spliced arrows form a promonoidal category with their sequential
splits, units, and suitable coherence morphisms.

Proof. In Lemma C.3, we construct the associator out of Yoneda isomorphisms. In Lemmas C.4 and C.5,
we construct both unitors. As they are all constructed with Yoneda isomorphisms, they must satisfy the
coherence equations. �

Lemma C.3 (Promonoidal splice associator). We can construct a natural isomorphism,

𝛼 :
∫ 𝑈

𝑉
∈SC
SC

(
𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

)
× SC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
�

∫ 𝑈
𝑉
∈SC
SC

(
𝐴
𝐵;𝑈𝑉 C 𝑋

′′
𝑌 ′′

)
× SC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
,

exclusively from Yoneda isomorphisms. This isomorphism is defined by stating that 𝛼(〈 𝑓0 # � # 𝑓1 # � #
𝑓2〉|〈𝑔0 # � # 𝑔1 # � # 𝑔2〉) = (〈ℎ0 # � # ℎ1 # � # ℎ2〉|〈𝑘0 # � # 𝑘1 # � # 𝑘2〉) if and only if

〈 𝑓0 # 𝑔0 # � # 𝑔1 # � # 𝑔2 # 𝑓1 # � # 𝑔2〉 = 〈ℎ0 # � # ℎ1 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # ℎ2〉.

Proof. We will show that both sides of the equation are isomorphic to C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) ×
C(𝑋 ′′; 𝐵); that is, the set of quadruples of morphisms 〈𝑝0 # � # 𝑝1 # � # 𝑝2 # � # 𝑝3〉 where 𝑝0 : 𝐴 → 𝑋 ,
𝑝1 : 𝑌 → 𝑋 ′, 𝑝2 : 𝑌 ′→ 𝑋 ′ and 𝑝3 : 𝑌 ′′→ 𝐵.

Indeed, the following coend calculus computation constructs an isomorphism,∫ 𝑈
𝑉
∈SC
SC

(
𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

)
× SC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
= (by definition)∫ 𝑈

𝑉
∈SC
C(𝐴; 𝑋) × C(𝑌 ;𝑈) × C(𝑉 ; 𝐵) × C(𝑈; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′;𝑉) = (by definition)∫ 𝑈

𝑉
∈SC
C(𝐴; 𝑋) × SC

(
𝑌
𝐵;𝑈𝑉

)
× C(𝑈; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′;𝑉) � (by Yoneda reduction)

C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′; 𝐵),

that sends a pair 〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉|〈𝑔0 # � # 𝑔1 # � # 𝑔2〉, quotiented by the equivalence relation generated
by 〈 𝑓0 # � # 𝑓1 # 𝑛 # � # 𝑚 # 𝑓2〉|〈𝑔0 # � # 𝑔1 # � # 𝑔2〉 = 〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉|〈𝑛 # 𝑔0 # � # 𝑔1 # � # 𝑚 # 𝑔2〉, to the
canonical form 〈 𝑓0 # � # 𝑓1 # 𝑔0 # � # 𝑔1 # � # 𝑔2 # 𝑓2〉.

In the same way, the following coend calculus computation constructs the second isomorphism,∫ 𝑈
𝑉
∈SC
SC

(
𝐴
𝐵;𝑈𝑉 C 𝑋

′′
𝑌 ′′

)
× SC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=∫ 𝑈

𝑉
∈SC
C(𝐴;𝑈) × C(𝑉 ; 𝑋 ′′) × C(𝑌 ′′; 𝐵) × C(𝑈; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′;𝑉) def

=∫ 𝑈
𝑉
∈SC
SC

(
𝐴
𝑋 ′′;

𝑈
𝑉

)
× C(𝑌 ′′; 𝐵) × C(𝑈; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′;𝑉)

𝑦1
�

C(𝐴; 𝑋) × C(𝑌 ; 𝑋 ′) × C(𝑌 ′; 𝑋 ′′) × C(𝑌 ′′; 𝐵),

that sends a pair 〈ℎ0 # � # ℎ1 # � # ℎ2〉|〈𝑘0 # � # 𝑘1 # � # 𝑘2〉, quotiented by the equivalence relation generated
by 〈ℎ0 # 𝑛 # � # 𝑚 # ℎ1 # � # ℎ2〉|〈𝑘0 # � # 𝑘1 # � # 𝑘2〉 = 〈ℎ0 # � # ℎ1 # � # ℎ2〉|〈𝑛 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # 𝑚〉, to the
canonical form 〈ℎ0 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # ℎ1 # � # ℎ2〉.

In summary, we have that 𝛼(〈 𝑓0 #�# 𝑓1 #�# 𝑓2〉|〈𝑔0 #�#𝑔1 #�#𝑔2〉) = (〈ℎ0 #�#ℎ1 #�#ℎ2〉|〈𝑘0 #�#𝑘1 #�#𝑘2〉)
if and only if

〈 𝑓0 # 𝑔0 # � # 𝑔1 # � # 𝑔2 # 𝑓1 # � # 𝑔2〉 = 〈ℎ0 # � # ℎ1 # 𝑘0 # � # 𝑘1 # � # 𝑘2 # ℎ2〉,

which is what we wanted to prove. �

Lemma C.4 (Promonoidal splice left unitor). We can construct a natural isomorphism,

𝜆 :
∫ 𝑈

𝑉
∈SC
SC

(
𝐴
𝐵;𝑈𝑉 C 𝑋𝑌

)
× SC

(
𝑈
𝑉 ; 𝑁

)
� SC

(
𝐴
𝐵; 𝑋𝑌

)
,

exclusively from Yoneda isomorphisms. This isomorphism is defined by 𝜆(〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉|𝑔) = 〈 𝑓0 # 𝑔 #
𝑓1 # � # 𝑓2〉.

Proof. Indeed, the following coend calculus derivation constructs the isomorphism.∫ 𝑈
𝑉
∈SC
SC

(
𝐴
𝐵;𝑈𝑉 C 𝑋𝑌

)
× SC

(
𝑈
𝑉 ; 𝑁

)
= (by definition)∫ 𝑈

𝑉
∈SC
C(𝐴;𝑈) × C(𝑉 ; 𝑋) × C(𝑌 ; 𝐵) × C(𝑈;𝑉) = (by definition)∫ 𝑈

𝑉
∈SC
SC

(
𝐴
𝑋;𝑈𝑉

)
× C(𝑌 ; 𝐵) × C(𝑈;𝑉) � (by Yoneda reduction)

C(𝐴; 𝑋) × C(𝑌 ; 𝐵).

Thus, it is constructed by a Yoneda isomorphism. �

Lemma C.5 (Promonoidal splice right unitor). We can construct a natural isomorphism,

𝜌 :
∫ 𝑈

𝑉
∈SC
SC

(
𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

)
× SC

(
𝑈
𝑉 ; 𝑁

)
� SC

(
𝐴
𝐵; 𝑋𝑌

)
,

exclusively from Yoneda isomorphisms. This isomorphism is defined by 𝜌(〈 𝑓0 #� # 𝑓1 #� # 𝑓2〉|𝑔) = 〈 𝑓0 #� #
𝑓1 # 𝑔 # 𝑓2〉.

Proof. Indeed, the following coend calculus derivation constructs the isomorphism.∫ 𝑈
𝑉
∈SC
SC

(
𝐴
𝐵; 𝑋𝑌 C

𝑈
𝑉

)
× SC

(
𝑈
𝑉 ; 𝑁

)
= (by definition)∫ 𝑈

𝑉
∈SC
C(𝐴; 𝑋) × C(𝑌 ;𝑈) × C(𝑉 ; 𝐵) × C(𝑈;𝑉) = (by definition)∫ 𝑈

𝑉
∈SC
C(𝐴; 𝑋) × SC

(
𝑌
𝐵;𝑈𝑉

)
× C(𝑈;𝑉) � (by Yoneda reduction)

C(𝐴; 𝑋) × C(𝑌 ; 𝐵).

Thus, it is constructed by a Yoneda isomorphism. �

Proposition C.6 (From Proposition 3.6). Splice gives a functor S : Cat→ Promon.

Proof. Definition 3.4 defines the action on categories. We define the action on functors. Given a functor
𝐹 : C→ D, define the promonoidal functor S𝐹 : SC→ SD by

𝐴
𝐵 ↦→ 𝐹𝐴

𝐹𝐵,

S𝐹 := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝐵 : SC(𝐴𝐵, 𝑋𝑌) → SD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌),
S𝐹C := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝑋 ′ × 𝐹𝑌 ′,𝐵 : SC(𝐴𝐵, 𝑋𝑌 C 𝑋

′
𝑌 ′) → SD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌 C 𝐹𝑋

′
𝐹𝑌 ′),

S𝐹𝑁 := 𝐹𝐴,𝐵 : SC(𝐴𝐵, 𝑁) → SD(𝐹𝐴𝐹𝐵, 𝑁).

It follows from the promonoidal structure on spliced arrows (Proposition C.2) that this preserves coherence
maps. If IdC : C→ C is an identity functor, then it defines the identity IdSC, which has underlying functor
the identity and identity natural transformations. If 𝐺 : B→ C is another functor, then S(𝐺 # 𝐹) = S𝐺 #S𝐹
follows from composition of functors. �

Theorem C.7 (From Theorem 3.7). There exists an adjunction between categories and promonoidal
categories, where the contour of a promonoidal is the left adjoint, and the splice category is the right
adjoint.

Proof. Let C be a category and let B be a promonoidal category. We will show that the promonoidal
functors B → SC are in natural correspondence with the functors CB → C. We first observe that the
category CB is freely presented; thus, a functor CB→ C amounts to a choice of some objects and some
morphisms in C satisfying some equations. Explicitly, by the definition of contour, a functor CB → C
amounts to
• for each 𝑋 ∈ Bobj, a choice of objects 𝑋𝐿 , 𝑋𝑅 ∈ Cobj;
• for each element 𝑎 ∈ B(𝑋), a choice of morphisms 𝑎0 ∈ C(𝑋𝐿 , 𝑋𝑅);
• for each morphism 𝑎 ∈ B(𝐴; 𝑋), a choice of morphisms 𝑎0 ∈ C(𝐴𝐿; 𝑋𝐿) and 𝑎1 ∈ C(𝑋𝑅; 𝐴𝑅);
• for each split 𝑎 ∈ C(𝐴; 𝑋 C 𝑌), a choice of morphisms 𝑎0 ∈ C(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ C(𝑋𝑅;𝑌 𝐿) and
𝑎2 ∈ C(𝑌𝑅; 𝐴𝑅);

• the choice must be such that 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑) implies 𝑎0 = 𝑐0 # 𝑑0; 𝑎1 # 𝑏0 = 𝑑1 and 𝑏1 = 𝑑2 # 𝑐1;
𝑎2 # 𝑏2 = 𝑐2;

• the choice must be such that 𝜌(𝑎 |𝑏) = 𝑐 = 𝜆(𝑑 |𝑒) implies 𝑎0 = 𝑐0 = 𝑑0#𝑒0#𝑑1 and 𝑎1#𝑏0#𝑎2 = 𝑐1 = 𝑑2.
On the other hand, a promonoidal functor B→ SC, also amounts to
• for each 𝑋 ∈ Bobj, an object 𝐹𝑋 = (𝑋𝐿 , 𝑋𝑅) ∈ SCobj, which is a pair of objects of Cobj;
• for each element 𝑎 ∈ B(𝑋), a morphism 𝐹 (𝑎) = 𝑎0 ∈ SC(𝐹𝑋);
• for each element 𝑎 ∈ B(𝐴; 𝑋), a splice 𝐹 (𝑎) = 〈𝑎0 # � # 𝑎1〉 ∈ SC(𝐹𝐴; 𝐹𝑋);
• for each element 𝑎 ∈ B(𝐴; 𝑋 C 𝑌), a splice 𝐹 (𝑎) = 〈𝑎0 # � # 𝑎1 # � # 𝑎2〉 ∈ SC(𝐹𝐴; 𝐹𝑋 C 𝐹𝑌);
• preserving associativity, with 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑) implying 𝛼(𝐹 (𝑎) | 𝐹 (𝑏)) = 𝐹 (𝑐) | 𝐹 (𝑑);
• preserving unitality, with 𝜌(𝑎 | 𝑏) = 𝑐 = 𝜆(𝑑 | 𝑒) implying 𝜌(𝐹 (𝑎) | 𝐹 (𝑏)) = 𝐹 (𝑐) = 𝜆(𝐹 (𝑑) | 𝐹 (𝑒));

by the definition of splice, its associativity and unitality, the structure on each one of these points is exactly
equal. �

C.1 Spliced arrow multicategory
As a consequence of the previous discussion, the n-morphisms are the sequences of arrows in C separated

by 𝑛 gaps; the sequence of arrows goes from 𝐴 to 𝐵, with holes typed by {𝑋𝑖 , 𝑌𝑖}𝑖∈[1,...,𝑛] . In other words,

SC
(
𝐴
𝐵 ; 𝑋1

𝑌1
⊗ . . . ⊗ 𝑋𝑛

𝑌𝑛

)
= C(𝐴; 𝑋1) ×

(
𝑛−1∏
𝑘=1

C(𝑌𝑘 , 𝑋𝑘+1)
)
× C(𝑌𝑛, 𝐵).

Composition in the multicategory is defined by substitution of a spliced arrow into one of the gaps of
the second; the identity is just id𝐴 − id𝐵, the spliced arrow with a single gap typed by (𝐴, 𝐵).

Proposition C.8. The multicategory of spliced arrows, SC, is precisely the promonoidal category induced
by the duality Cop a C in the monoidal bicategory of profunctors: a promonoidal category over C × Cop.

Appendix D
Parallel-Sequential Context

D.1 Monoidal Contour
Definition D.1 (Monoidal contour, from Definition 4.4). The contour of a produoidal category B is the
monoidal category DB that has two objects, 𝑋𝐿 (left-handed) and 𝑋𝑅 (right-handed), for each object
𝑋 ∈ B𝑜𝑏 𝑗 ; and has arrows those that arise from contouring both sequential and parallel decompositions of
the promonoidal category.

𝑎𝑎𝑎0 𝑎1 𝑎𝑎0 𝑎1𝑎1𝑎0𝑎

𝑎0

𝑎𝑎0

𝑎1

𝑎2

Fig. 22: Generators of the monoidal category of contours.

Specifically, it is freely presented by (i) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ DB(𝑋𝑅; 𝐴𝑅) for
each morphism 𝑎 ∈ B(𝐴; 𝑋); (ii) a morphism 𝑎0 ∈ DB(𝐴𝐿; 𝐴𝑅), for each sequential unit 𝑎 ∈ C(𝐴; 𝑁);
(iii) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝐼) and 𝑎0 ∈ DB(𝐼; 𝐴𝑅), for each parallel unit 𝑎 ∈ B(𝐴; 𝐼); (iv)
a triple of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿), 𝑎1 ∈ DB(𝑋𝑅;𝑌 𝐿), 𝑎2 ∈ DB(𝑌𝑅; 𝐴𝑅) for each sequential split
𝑎 ∈ B(𝐴; 𝑋 C 𝑌); and (v) a pair of morphisms 𝑎0 ∈ DB(𝐴𝐿; 𝑋𝐿 ⊗ 𝑌 𝐿) and 𝑎1 ∈ DB(𝑋𝑅 ⊗ 𝑌𝑅; 𝐴𝑅) for
each parallel split 𝑎 ∈ B(𝐴; 𝑋 ⊗ 𝑌), see Figure 22.

For each equality 𝑎 #2 𝑏 = 𝑐 #1 𝑑, we impose the equations 𝑎0 = 𝑐0 # 𝑑0; 𝑎1 # 𝑏0 = 𝑑1 and 𝑏1 = 𝑑2 # 𝑐1;
𝑎2 # 𝑏2 = 𝑐2. For each equality 𝑎 #2 𝑏 = 𝑐 = 𝑑 #1 𝑒, we impose 𝑎0 = 𝑐0 = 𝑑0 # 𝑒0 # 𝑑1 and 𝑎1 # 𝑏0 #𝑎2 = 𝑐1 = 𝑑2.
These follow from Figure 7.

For each application of associativity, 𝛼(𝑎#1𝑏) = 𝑐#2𝑑, we impose the equations 𝑎0#(𝑏0⊗id) = 𝑐0#(id⊗𝑑0)
and (𝑏1 ⊗ id) # 𝑎1 = (id ⊗ 𝑑1) # 𝑐1. These follow from Figure 23.

𝑏𝑏0

𝑏1

𝑎𝑎0 𝑎1

𝑑

𝑑0 𝑑1

𝑐𝑐0 𝑐1

=

Fig. 23: Equation from associativity.

For each application of unitality, 𝜆(𝑎 #1 𝑏) = 𝑐 = 𝜌(𝑑 #2 𝑒), we impose the equations 𝑎0 # (𝑏0 ⊗ id) = 𝑐0 =

𝑑0 # (id ⊗ 𝑒0) and (𝑏1 ⊗ id) # 𝑎1 = 𝑐1 = (id ⊗ 𝑒1) # 𝑑1. These follow from Figure 24.

𝑎𝑎0 𝑎1 𝑑𝑑0 𝑑1

=

𝑏 𝑏1𝑏0 𝑒 𝑒1𝑒0

𝑐𝑐0 𝑐1
=

Fig. 24: Equations from unitality.

For each application of the laxator, 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓), we impose the equation 𝑎0 # (𝑏0⊗𝑐0) = 𝑑0 #𝑒0,
the middle equation 𝑏1 ⊗ 𝑐1 = 𝑒1 # 𝑑1 # 𝑓0, and (𝑏2 ⊗ 𝑐2) # 𝑎1 = 𝑓1 # 𝑑2. These follow Figure 25.

For each application of the laxator, 𝜓0 (𝑎) = (𝑏 |1 𝑐 |2 𝑑), we impose an equation 𝑎0 = 𝑏0 # 𝑐0, an equation
id = 𝑐1 # 𝑏1 # 𝑑0, and an equation 𝑎1 = 𝑑1 # 𝑏2. This follows Figure 26.

For each application of the laxator, 𝜑2 (𝑎 |1 𝑏 |2 𝑐) = 𝑑, we impose an equation 𝑎0 # (𝑏0 ⊗ 𝑐0) # 𝑎1 = 𝑑0.
This follows Figure 27.

For each application of the laxator, 𝜑0 (𝑎) = 𝑏, we impose an equation 𝑎0 # 𝑎1 = 𝑏0. This follows
Figure 28.

𝑎𝑎0 𝑎1

𝑐

𝑐0

𝑐1

𝑐2𝑏𝑏0

𝑏1

𝑏2

𝑒𝑒0

𝑒1

𝑑𝑑0

𝑑1

𝑑2

𝑓

𝑓0

𝑓1

Fig. 25: Equations for the first laxator.

𝑐

𝑐1
𝑐0

𝑏𝑏0

𝑏1

𝑏2

𝑑 𝑑1
𝑑0

𝑎 𝑎1𝑎0

Fig. 26: Equations for the second laxator.

𝑎𝑎0 𝑎1

𝑏

𝑏0

𝑐

𝑐0

𝑑

𝑑0

Fig. 27: Equations for the third laxator.

𝑏

𝑏0

𝑎 𝑎1𝑎0

Fig. 28: Equations for the fourth laxator.

Proposition D.2 (From Proposition 4.5). Monoidal contour gives a functor D : Produo→Mon.

Proof. Definition 4.4 defines the action on produoidal categories. We define the action on produoidal
functors. Given a produoidal functor 𝐹 : V → W, define the strict monoidal functor D𝐹 : DV → DW
by the following morphism of presentations:
• the objects 𝑋𝐿 and 𝑋𝑅 are mapped to 𝐹 (𝑋)𝐿 and 𝐹 (𝑋)𝑅;
• for each 𝑎 ∈ V(𝐴; 𝑁), the morphism 𝑎0 : 𝐴𝐿 → 𝐴 is mapped to 𝐹𝑁 (𝑎)0;
• for each 𝑏 ∈ V(𝐴; 𝐼), both 𝑏0 : 𝐴𝐿 → 𝐼 and 𝑏1 : 𝐼 → 𝐴𝑅 are mapped to 𝐹𝐼 (𝑏)0 and 𝐹𝐼 (𝑏)1;
• for each 𝑐 ∈ V(𝑋; 𝐵), the morphisms 𝑐0 : 𝐵𝐿 → 𝑋𝐿 , 𝑐1 : 𝑋𝑅 → 𝐵𝑅 are mapped to 𝐹 (𝑐)0 and 𝐹 (𝑐)1;
• for each 𝑑 ∈ V(𝐶;𝑌 ⊗ 𝑍), the morphisms 𝑑0 : 𝐶𝐿 → 𝑌 𝐿 , 𝑑1 : 𝑌𝑅 → 𝑍𝐿 and 𝑑2 : 𝑍𝑅 → 𝐶𝑅 are

mapped to 𝐹C (𝑑)0, 𝐹C (𝑑)1 and 𝐹C (𝑑)2;
• for each 𝑒 ∈ V(𝐶;𝑌 C 𝑍), the morphisms 𝑒0 : 𝐶𝐿 → 𝑌 𝐿 , 𝑒1 : 𝑌𝑅 → 𝑍𝐿 and 𝑒2 : 𝑍𝑅 → 𝐶𝑅 are

mapped to 𝐹C (𝑒)0, 𝐹C (𝑒)1 and 𝐹C (𝑒).
It follows from 𝐹 : V → W being a produoidal functor that the contour equations of Definition 3.1
hold between the images of generators, so this assignment extends freely to a strict monoidal functor. In
particular when IdV : V→ V is an identity, it is an identity functor. Let 𝐺 : U→ V be another produoidal
functor, then C(𝐺 # 𝐹) = C(𝐺) # C(𝐹) follows from the composition of produoidal functors. �

D.2 Spliced Monoidal Arrows
Proposition D.3 (From Proposition 4.7). Spliced monoidal arrows form a produoidal category with their
sequential and parallel splits, units, and suitable coherence morphisms and laxators.

Proof. We use the laxators constructed in Lemmas D.4 to D.7. Because these laxators are constructed out
of compositions and Yoneda lemma, they do satisfy all formal coherence equations. �

Lemma D.4 (Produoidal splice, first laxator). We can construct a natural transformation,

𝜓2 : TC
(
𝐴
𝐵;

(
𝑋
𝑌 C

𝑋 ′
𝑌 ′

)
⊗

(
𝑈
𝑉 C

𝑈 ′
𝑉 ′

))
→ TC

(
𝐴
𝐵;

(
𝑋
𝑌 ⊗ 𝑈𝑉

)
C

(
𝑋 ′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

))
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by

𝜓2 (〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 # � # ℎ1 # � # ℎ2〉 | 〈𝑘0 # � # 𝑘1 # � # 𝑘2〉) = 〈𝑔0 # � # 𝑔1 # � # 𝑔2〉|〈𝑝0 # � # 𝑝1〉|〈𝑞0 # � # 𝑞1〉

if and only if

〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # ℎ1 ⊗ 𝑘1 # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉 = 〈𝑔0 # 𝑝0 # � # 𝑝1 # 𝑔1 # 𝑞0 # � # 𝑞1 # 𝑔2〉.

Proof. We will show that the right hand side is isomorphic to the following set. Then, we construct a map
from the left hand to this same set,

C(𝐴; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′;𝑈 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑉 ′; 𝐵).

Indeed the following coend derivation constructs an isomorphism.

TC
(
𝐴
𝐵;

(
𝑋
𝑌 ⊗ 𝑋

′
𝑌 ′

)
C

(
𝑈
𝑉 ⊗ 𝑈

′
𝑉 ′

)) def
=∫ 𝑍

𝑊
, 𝑍
′

𝑊 ′∈TC TC
(
𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
)
× TC

(
𝑍
𝑊 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
× TC

(
𝑍 ′
𝑊 ′;

𝑈
𝑉 ⊗ 𝑈

′
𝑉 ′

) def
=∫ 𝑍

𝑊
, 𝑍
′

𝑊 ′∈TC TC
(
𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
)
× C(𝑍; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′;𝑊) × C(𝑍 ′;𝑈 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑉 ′;𝑊 ′) def

=∫ 𝑍
𝑊
, 𝑍
′

𝑊 ′∈TC TC
(
𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
)
× TC(𝑍𝑊 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′) × TC(𝑍

′
𝑊 ′;

𝑈 ⊗𝑈 ′
𝑉 ⊗𝑉 ′)

𝑦1
�

TC
(
𝐴
𝐵; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′ C

𝑈 ⊗𝑈 ′
𝑉 ⊗𝑉 ′

) def
=

C(𝐴; 𝑋 ⊗ 𝑋 ′) × C(𝑌 ⊗ 𝑌 ′;𝑈 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑉 ′; 𝐵).

The isomorphism sends the triple (〈𝑔0#�#𝑔1#�#𝑔2〉|〈𝑝0#�#𝑝1〉|〈𝑞0#�#𝑞1〉) to 〈𝑔0#𝑝0#�#𝑝1#𝑔1#𝑞0#�#𝑞1#𝑔2〉.
On the other hand, we define a map from the left hand side of the equation to this set, given by

〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 # � # ℎ1 # � # ℎ2〉 | 〈𝑘0 # � # 𝑘1 # � # 𝑘2〉 ↦→ 〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # ℎ1 ⊗ 𝑘1 # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉.

In conclusion, composing both the isomorphism and the map, 𝜓2 (〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 # � # ℎ1 # � # ℎ2〉 | 〈𝑘0 #
� # 𝑘1 # � # 𝑘2〉) = 〈𝑔0 # � # 𝑔1 # � # 𝑔2〉|〈𝑝0 # � # 𝑝1〉|〈𝑞0 # � # 𝑞1〉 if and only if

〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # (ℎ1 ⊗ 𝑘1) # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉 = 〈𝑔0 # 𝑝0 # � # 𝑝1 # 𝑔1 # 𝑞0 # � # 𝑞1 # 𝑔2〉,

which is what we wanted to prove. �

Lemma D.5 (Produoidal splice, second laxator). We can construct a natural transformation,

𝜓0 : TC
(
𝐴
𝐵; 𝐼

)
→ TC

(
𝐴
𝐵; 𝐼 C 𝐼

)
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by 𝜓0 (〈 𝑓0 # � # 𝑓1〉 | 〈ℎ0 #
� # ℎ1 # � # ℎ2〉 | 〈𝑘0 # � # 𝑘1 # � # 𝑘2〉) = 〈𝑔0 # � # 𝑔1 # � # 𝑔2〉|〈𝑝0 # � # 𝑝1〉|〈𝑞0 # � # 𝑞1〉 if and only if

〈 𝑓0 # (ℎ0 ⊗ 𝑘0) # � # (ℎ1 ⊗ 𝑘1) # � # (ℎ2 ⊗ 𝑘2) # 𝑓1〉 = 〈𝑔0 # 𝑝0 # � # 𝑝1 # 𝑔1 # 𝑞0 # � # 𝑞1 # 𝑔2〉.

Proof. We will show that the right hand side is isomorphic to the following set. Then, we construct a map
from the left hand to this same set, C(𝐴; 𝐼) × C(𝐼; 𝐼) × C(𝐼; 𝐵). Indeed the following coend derivation
constructs an isomorphism.

TC
(
𝐴
𝐵; 𝐼 C 𝐼

) def
=∫ 𝑍

𝑊
, 𝑍
′

𝑊 ′∈TC TC
(
𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
)
× TC

(
𝑍
𝑊 ; 𝐼

)
× TC

(
𝑍 ′
𝑊 ′; 𝐼

) def
=∫ 𝑍

𝑊
, 𝑍
′

𝑊 ′∈TC TC
(
𝐴
𝐵; 𝑍𝑊 C 𝑍 ′

𝑊 ′
)
× TC

(
𝑍
𝑊 ; 𝐼𝐼

)
× TC

(
𝑍 ′
𝑊 ′;

𝐼
𝐼

) 𝑦1
�

TC
(
𝐴
𝐵; 𝐼𝐼 C 𝐼𝐼

) def
=

C(𝐴; 𝐼) × C(𝐼; 𝐼) × C(𝐼; 𝐵).

This isomorphism sends the triple 〈𝑏0#�#𝑏1#�#𝑏2〉 | 〈𝑐0#�#𝑐1〉 | 〈𝑑0#�#𝑑1〉 to 〈𝑏0#𝑐0#�#𝑐1#𝑏1#𝑑0#�#𝑑1#𝑏2〉.
On the other hand, we define a map from the left hand side of the equation to this set, given by

〈𝑎0 # � # 𝑎1〉 ↦→ 〈𝑎0 # � # id𝐼 # � # 𝑎1〉.

In conclusion, composing both the isomorphism and this function, we get that 𝜓0〈𝑎0 #� #𝑎1〉 = 〈𝑏0 #� # 𝑏1 #
� # 𝑏2〉 | 〈𝑐0 #� # 𝑐1〉 | 〈𝑑0 #� # 𝑑1〉 if and only if 〈𝑎0 #� # id𝐼 #� # 𝑎1〉 = 〈𝑏0 # 𝑐0 #� # 𝑐1 # 𝑏1 # 𝑑0 #� # 𝑑1 # 𝑏2〉. �

Lemma D.6 (Produoidal splice, third laxator). We can construct a natural transformation,

𝜑2 : TC
(
𝐴
𝐵; 𝑁 ⊗ 𝑁

)
→ TC

(
𝐴
𝐵; 𝑁

)
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by 𝜑2 (〈 𝑓0 #�# 𝑓1〉 |ℎ0 |ℎ1) =
𝑓0 # (ℎ0 ⊗ ℎ1 # 𝑓1).

Lemma D.7 (Produoidal splice, fourth laxator). We can construct a natural transformation,

𝜑0 : TC
(
𝐴
𝐵; 𝐼

)
→ TC

(
𝐴
𝐵; 𝑁

)
,

exclusively from compositions and Yoneda isomorphisms. This laxator is defined by 𝜑0〈𝑎0 #� #𝑎1〉 = 𝑎0 #𝑎1.

Proposition D.8 (From Proposition 4.8). Monoidal splice gives a functor T : Mon→ Produo.

Proof. Definition 4.6 defines the action on monoidal categories. We define the action on monoidal functors.
Given a monoidal functor 𝐹 : C→ D, define the produoidal functor T𝐹 : TC→ TD by

𝐴
𝐵 ↦→ 𝐹𝐴

𝐹𝐵

T𝐹 := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝐵 : TC(𝐴𝐵, 𝑋𝑌) → TD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌)
T𝐹C := 𝐹𝐴,𝑋 × 𝐹𝑌 ,𝑋 ′ × 𝐹𝑌 ′,𝐵 : TC(𝐴𝐵, 𝑋𝑌 C 𝑋

′
𝑌 ′) → TD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌 C 𝐹𝑋

′
𝐹𝑌 ′)

T𝐹⊗ := 𝐹𝐴,𝑋 ⊗𝑌 × 𝐹𝑋 ′⊗𝑌 ′,𝐵 : TC(𝐴𝐵, 𝑋𝑌 ⊗ 𝑋
′

𝑌 ′) → TD(𝐹𝐴𝐹𝐵, 𝐹𝑋𝐹𝑌 ⊗ 𝐹𝑋
′

𝐹𝑌 ′)
T𝐹𝑁 := 𝐹𝐴,𝐵 : TC(𝐴𝐵, 𝑁) → TD(𝐹𝐴𝐹𝐵, 𝑁)
T𝐹𝐼 := 𝐹𝐴,𝐼 × 𝐹𝐼 ,𝐵 : TC(𝐴𝐵, 𝐼) → TD(𝐹𝐴𝐹𝐵, 𝐼).

It follows from the produoidal structure on spliced monoidal arrows (Proposition D.3) that this preserves
coherence maps. If IdC : C → C is an identity functor, then it defines the identity IdTC, which has
underlying functor the identity and identity natural transformations. If 𝐺 : B → C is another monoidal
functor, then S(𝐺 # 𝐹) = S𝐺 # S𝐹 follows from composition of monoidal functors. �

Theorem D.9 (From Theorem 4.9). There exists an adjunction between monoidal categories (and strict
monoidal functors) and produoidal categories (and produoidal functors), where the monoidal contour is
the left adjoint, and the produoidal splice category is the right adjoint.

Proof. As in Theorem C.7, we again have that DB is presented by generators and equations; so, to
specify a strict monoidal functor DB→ M, it is enough to specify images of the generators satisfying the
equations. Let (M, ⊗𝑀 , 𝐼𝑀) be a monoidal category. Then a strict monoidal functor DB → M amounts
to the following data.
• For each object 𝑋 ∈ Bobj, a pair of objects 𝑋𝐿 , 𝑋𝑅 ∈ Mobj;
• for each element 𝑓 ∈ B(𝑋; 𝑁), a morphism 𝑓0 ∈ M(𝑋𝐿; 𝑋𝑅);
• for each unit 𝑓 ∈ B(𝑋; 𝐼), a choice of morphisms 𝑓0 ∈ M(𝑋𝐿; 𝐼𝑀), 𝑔0 ∈ M(𝐼𝑀 ; 𝑋𝑅);
• for each morphism 𝑓 ∈ B(𝐴; 𝑋), a choice of morphisms 𝑓0 ∈ M(𝐴𝐿; 𝑋𝐿) and 𝑓1 ∈ M(𝑋𝑅; 𝐴𝑅);

• for each sequential split 𝑓 ∈ B(𝐴; 𝑋 C 𝑌), a choice of morphisms 𝑓0 ∈ M(𝐴𝐿; 𝑋𝐿), 𝑓1 ∈
M(𝑋𝐿; 𝑋𝑅), and 𝑓2 ∈ M(𝑋𝑅, 𝐴𝑅);

• for each parallel split 𝑓 ∈ B(𝐴; 𝑋 ⊗ 𝑌), a choice of morphisms 𝑓0 ∈ M(𝐴𝐿; 𝑋𝐿 ⊗ 𝑌 𝐿) and 𝑓1 ∈
M(𝑋𝑅 ⊗ 𝑌𝑅; 𝐴𝑅).

Such that for each promonoidal structure
• 𝛼(𝑎 #1 𝑏) = (𝑐 #2 𝑑) in B ⇒ 𝑎0 # (𝑏0 ⊗ id) = 𝑐0 # (id ⊗ 𝑑0) and (𝑏1 ⊗ id) # 𝑎1 = (id ⊗ 𝑑1) # 𝑐1 in M;
• 𝜆(𝑎 #1 𝑏) = 𝑐 = 𝜌(𝑑 #2 𝑒) in B⇒ 𝑎0 # (𝑏0⊗ id) = 𝑐0 = 𝑑0 # (id⊗ 𝑒0) and (𝑏1⊗ id) #𝑎1 = 𝑐1 = (id⊗ 𝑒1) #𝑑1

in M;
and such that
• 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓) in B⇒ 𝑎0 # (𝑏0⊗ 𝑐0) = 𝑑0 #𝑒0, 𝑏1⊗ 𝑐1 = 𝑒1 #𝑑1 # 𝑓0 and (𝑏2⊗ 𝑐2) #𝑎1 = 𝑓1 #𝑑2

in M;
• 𝜓0 (𝑎) = (𝑏 | 𝑐 | 𝑑) in B ⇒ 𝑎0 = 𝑏0 # 𝑐0, id = 𝑐1 # 𝑏1 # 𝑑0, and 𝑎1 = 𝑑1 # 𝑏2 in M;
• 𝜑2 (𝑎 | 𝑏 | 𝑐) = 𝑑 in B ⇒ 𝑎0 # (𝑏0 ⊗ 𝑐0) # 𝑎1 = 𝑑0 in M;
• 𝜑0 (𝑎) = 𝑏 in B ⇒ 𝑎0 # 𝑎1 = 𝑏0 in M.

On the other hand, a produoidal functor 𝐹 : B→ TM, also amounts to the following data. For each
• 𝑋 ∈ Bobj an object 𝐹 (𝑋) = (𝑋𝐿 , 𝑋𝑅) ∈ TMobj;
• 𝑓 ∈ B(𝑋; 𝑁), an element 𝐹 (𝑓) = 𝑓0 ∈ TM(𝑋

𝐿

𝑋𝑅; 𝑁);
• 𝑓 ∈ B(𝑋; 𝐼), a unit 𝐹 (𝑓) = 〈 𝑓 ‖ 𝑔〉 ∈ TM(𝑋𝐿

𝑋𝑅; 𝐼𝑀)
• 𝑓 ∈ B(𝐴; 𝑋), a spliced arrow 𝐹 (𝑓) = 〈 𝑓0 # � # 𝑓1〉 ∈ TM(𝐴𝐵, 𝑋𝑌);
• 𝑓 ∈ B(𝐴; 𝑋 C 𝑌), a spliced arrow 𝐹 (𝑓) = 〈 𝑓0 # � # 𝑓1 # � # 𝑓2〉 ∈ TM(𝐴

𝐿

𝐴𝑅,
𝑋𝐿

𝑋𝑅 C 𝑌
𝐿

𝑌 𝑅);
• 𝑓 ∈ B(𝐴; 𝑋 ⊗ 𝑌), a spliced monoidal arrow 𝐹 (𝑓) = 〈 𝑓0 # � ⊗ � # 𝑓1〉 ∈ TM(𝐴

𝐿

𝐴𝑅,
𝑋𝐿

𝑋𝑅 ⊗ 𝑌
𝐿

𝑌 𝑅);
Such that for each promonoidal structure
• 𝛼(𝑎 | 𝑏) = (𝑐 | 𝑑) in B ⇒ 𝛼(𝐹𝑎 | 𝐹𝑏) = (𝐹𝑐 | 𝐹𝑑) in TM;
• 𝜆(𝑎 | 𝑏) = 𝑐 = 𝜌(𝑑 | 𝑒) in B ⇒ 𝜆(𝐹𝑎 | 𝐹𝑏) = 𝐹𝑐 = 𝜌(𝐹𝑑 | 𝐹𝑒) in TM;

and such that
• 𝜓2 (𝑎 | 𝑏 | 𝑐) = (𝑑 | 𝑒 | 𝑓) in B ⇒ 𝜓2 (𝐹𝑎 | 𝐹𝑏 | 𝐹𝑐) = (𝐹𝑑 | 𝐹𝑒 | 𝐹 𝑓) in TM;
• 𝜓0 (𝑎) = (𝑏 | 𝑐 | 𝑑) in B ⇒ 𝜓0 (𝐹𝑎) = (𝐹𝑎 | 𝐹𝑐 | 𝐹𝑑) in TM;
• 𝜑2 (𝑎 | 𝑏 | 𝑐) = 𝑑 in B ⇒ 𝜑2 (𝐹𝑎 | 𝐹𝑏 | 𝐹𝑐) = 𝐹𝑑 in TM;
• 𝜑0 (𝑎) = 𝑏 in B ⇒ 𝜑0 (𝐹𝑎) = 𝐹𝑏 in TM.

Each of these points is exactly equal by definition, which establishes the desired adjunction. �

Appendix E
Normalization

E.1 Normalization
Theorem E.1 (From Theorem 5.2). Let V⊗,𝐼 ,C,𝑁 be a produoidal category. The profunctor NV(•; •) =
V(•; 𝑁 ⊗•⊗𝑁) forms a promonad. Moreover, the Kleisli category of this promonad is a normal produoidal
category with the following sequential and parallel splits and units.

NV(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁);
NV(𝐴; 𝐵 ⊗ 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁);

NV(𝐴; 𝐵 C 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵 ⊗ 𝑁) C (𝑁 ⊗ 𝐶 ⊗ 𝑁));
NV(𝐴; 𝐼) = V(𝐴; 𝑁);
NV(𝐴; 𝑁) = V(𝐴; 𝑁).

Proof. We define the following multiplication and unit for the promonad, NV. They are constructed out
of laxators of the produoidal category V and Yoneda isomorphisms; thus, they must be associative and
unital by coherence. The unit is defined by

V(𝐴; 𝐵) � (by unitality of V)
V(𝐴; 𝐼 ⊗ 𝐵 ⊗ 𝐼) → (by the laxators of V)
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁) = (by definition)
NV(𝐴; 𝐵).

The multiplication is defined by,∫ 𝐵∈V
NV(𝐴; 𝐵) × NV(𝐵;𝐶) = (by definition)∫ 𝐵∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁) × V(𝐵; 𝑁 ⊗ 𝐶 ⊗ 𝑁) � (by Yoneda reduction)

V(𝐴; 𝑁 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝑁) → (by laxators of V)

V(𝐴; 𝑁 ⊗ 𝐶 ⊗ 𝑁) = (by definition)

NV(𝐴;𝐶).

Let us now construct the unitors and the associators. Again, they are constructed out of laxators of the
produoidal category V, the associators and unitors of V, and Yoneda isomorphisms. We first consider the
right unitor.∫ 𝑋 ∈NV

NV(𝐴; 𝐵 ⊗ 𝑋) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋; 𝑁) � (by associativity of V)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃; 𝑋) × NV(𝑋; 𝑁) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃; 𝑁) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁) � (by unitality)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁).

We now consider the left unitor.∫ 𝑋 ∈NV
NV(𝐴; 𝑋 ⊗ 𝐵) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV
V(𝐴; 𝑁 ⊗ 𝑋 ⊗ 𝑁 ⊗ 𝐵 ⊗ 𝑁) × NV(𝑋; 𝑁) � (by associativity of V)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × V(𝑃; 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋; 𝑁) = (by definition)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × NV(𝑃; 𝑋) × NV(𝑋; 𝑁) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × NV(𝑃; 𝑁) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐵 ⊗ 𝑁) × V(𝑃; 𝑁) � (by unitality)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁).

Finally, we consider the associator. We can do so in two steps, showing that both sides of the equation∫ 𝑋 ∈NV
NV(𝐴; 𝐵 ⊗ 𝑋) × NV(𝑋;𝐶 ⊗ 𝐷) �

∫ 𝑌 ∈NV
NV(𝐴;𝑌 ⊗ 𝐷) × NV(𝑌 ; 𝐵 ⊗ 𝐶)

are isomorphic to V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁). The first side by∫ 𝑋 ∈NV
NV(𝐴; 𝐵 ⊗ 𝑋) × NV(𝑋;𝐶 ⊗ 𝐷) = (by definition)∫ 𝑋 ∈NV
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋;𝐶 ⊗ 𝐷) � (by associativity)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁 ⊗ 𝑋 ⊗ 𝑁) × NV(𝑋;𝐶 ⊗ 𝐷) = (by definition)∫ 𝑋 ∈NV,𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃; 𝑋) × NV(𝑋;𝐶 ⊗ 𝐷) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × NV(𝑃;𝐶 ⊗ 𝐷) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑃) × V(𝑃; 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁) � (by associativity)

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁),

and the second side by∫ 𝑌 ∈NV
NV(𝐴;𝑌 ⊗ 𝐷) × NV(𝑌 ; 𝐵 ⊗ 𝐶) = (by definition)∫ 𝑌 ∈NV
V(𝐴; 𝑁 ⊗ 𝑌 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁) × NV(𝑌 ; 𝐵 ⊗ 𝐶) � (by associativity)∫ 𝑌 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × V(𝑃; 𝑁 ⊗ 𝑌 ⊗ 𝑁) × NV(𝑌 ; 𝐵 ⊗ 𝐶) = (by definition)∫ 𝑌 ∈NV,𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × NV(𝑃; 𝑋) × NV(𝑋; 𝐵 ⊗ 𝐶) � (by Yoneda reduction)∫ 𝑃∈V

V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × NV(𝑃; 𝐵 ⊗ 𝐶) = (by definition)∫ 𝑃∈V
V(𝐴; 𝑃 ⊗ 𝐷 ⊗ 𝑁) × V(𝑃; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁) � (by associativity)

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁 ⊗ 𝐷 ⊗ 𝑁).

Precisely because they are constructed out of coherence morphisms for the base produoidal category V,
we know that these satisfy the pentagon and triangle equations and define a promonoidal category. The
unitors and associators for the sequential promonoidal structure are defined similarly. Finally, we define
the laxators of NV, making it into a produoidal category.

The first laxator,

𝜓2 : NV(𝐴; (𝐵1 C 𝐶1) ⊗ (𝐵2 C 𝐶2)) −→ NV(𝐴; (𝐵1 ⊗ 𝐵2) C (𝐶1 ⊗ 𝐶2)),

is defined by the following reasoning.

NV(𝐴; (𝐵1 C 𝐶1) ⊗ (𝐵2 C 𝐶2))
= (by definition)

V(𝐴; 𝑁 ⊗ ((𝑁 ⊗ 𝐵1 ⊗ 𝑁) C (𝑁 ⊗ 𝐶1 ⊗ 𝑁)) ⊗ 𝑁 ⊗ ((𝑁 ⊗ 𝐵2 ⊗ 𝑁) C (𝑁 ⊗ 𝐶2 ⊗ 𝑁)) ⊗ 𝑁)
→ (by 𝜓2 of V)

V(𝐴; ((𝑁 ⊗ 𝑁 ⊗ 𝐵1 ⊗ 𝑁) C (𝑁 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁)) ⊗ ((𝑁 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁 ⊗ 𝑁) C (𝑁 ⊗ 𝐶2 ⊗ 𝑁 ⊗ 𝑁)))
→ (by 𝜓2 of V)

V(𝐴; (𝑁 ⊗ 𝑁 ⊗ 𝐵1 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁 ⊗ 𝑁) C (𝑁 ⊗ 𝑁 ⊗ 𝐶1 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝑁 ⊗ 𝐶2 ⊗ 𝑁 ⊗ 𝑁))
→ (by 𝜑2 of V)

V(𝐴; (𝑁 ⊗ 𝑁 ⊗ 𝐵1 ⊗ 𝑁 ⊗ 𝐵2 ⊗ 𝑁 ⊗ 𝑁) C (𝑁 ⊗ 𝑁 ⊗ 𝐶1 ⊗ 𝑁 ⊗ 𝐶2 ⊗ 𝑁 ⊗ 𝑁))
= (by definition)

NV(𝐴; (𝐵1 ⊗ 𝐵2) C (𝐶1 ⊗ 𝐶2)).

The remaining laxators are isomorphisms that arise from applications of unitality or just as identities.

𝜓0 : NV(𝐴, 𝐼) �−→ NV(𝐴; 𝐼 C 𝐼)

𝜑2 : NV(𝐴; 𝑁 ⊗ 𝑁) �−→ NV(𝐴; 𝑁)

𝜑0 : NV(𝐴; 𝐼) 𝑖𝑑−→ NV(𝐴; 𝑁)

This has shown that the resulting category is also a normal produoidal category. �

Proposition E.2. Normalization extends to a endofunctor of produoidal categories N : Produo→ Produo.

Proof. Let V⊗,𝐼 ,C,𝑁 and W�,𝐽 ,J,𝑀 be produoidal categories. N sends V to its normalization NV. Let
(𝐹, 𝐹⊗, 𝐹𝐼 , 𝐹C, 𝐹𝑁) : V → W be a produoidal functor. Then N𝐹 : NV → NW has underlying functor
defined by 𝐹 on objects and on morphisms by

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁) = (by definition)∫ 𝑋,𝑌 ∈V
V(𝐴; 𝑋 ⊗ 𝐵 ⊗ 𝑌) × V(𝑋; 𝑁) × V(𝑌 ; 𝑁) → (induced by 𝐹⊗, 𝐹𝑁)∫ 𝑋,𝑌 ∈V
W(𝐹𝐴; 𝐹𝑋 � 𝐹𝐵 � 𝐹𝑌) ×W(𝐹𝑋; 𝑀) ×W(𝐹𝑌 ; 𝑀) → (inclusion, universal prop. of coend)∫ 𝑃,𝑄∈W
W(𝐹𝐴; 𝑃 � 𝐹𝐵 � 𝑄) ×W(𝑃; 𝑀) ×W(𝑄; 𝑀) = (by definition)

W(𝐹𝐴; 𝑀 � 𝐹𝐵 � 𝑀).

N𝐹⊗ and N𝐹C are defined similarly, and N𝐹𝑁 is 𝐹𝑁 . We have NIdV = IdNV, since all the data of
the left hand side is given by identity maps on NV, and if 𝐺 : U→ V is another produoidal functor, then
N(𝐺 # 𝐹) = N𝐺 #N𝐹 follows from the naturality of the components of 𝐹 and 𝐺. �

Theorem E.3 (From Theorem 5.3). The functor N : Produo → Produo from Proposition E.2 is an
idempotent monad.

Proof. Let V⊗,𝐼 ,C,𝑁 be a produoidal category and let C𝑁 , ⊗𝑁 , 𝑁 denote the sequential splits, parallel
splits, and unit in its normalization NV.

The monad has unit 𝜂 with component at V the following produoidal functor 𝜂V : V → NV. The
underlying functor is the functor induced by the promonad [Rom22, Lemma 3.8]: it is identity on objects,
and acts on morphisms by the unit of the promonad. The following components of the produoidal functor
preserve laxators and coherence maps since they are constructed only from laxators and coherence maps.

𝜂⊗ : V(𝐴; 𝐵 ⊗ 𝐶)
𝜆 , 𝜌
→ V(𝐴; 𝐼 ⊗ 𝐵 ⊗ 𝐼 ⊗ 𝐶 ⊗ 𝐼)

𝜑0−−→ V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝑁 ⊗ 𝐶 ⊗ 𝑁),

𝜂𝐼 : V(𝐴; 𝐼)
𝜑0−−→ V(𝐴; 𝑁),

𝜂C : V(𝐴; 𝐵 C 𝐶)
𝜆 , 𝜌
→ V(𝐴; (𝐼 ⊗ 𝐵 ⊗ 𝐼) C (𝐼 ⊗ 𝐶 ⊗ 𝐼))

𝜑0−−→ V(𝐴; (𝑁 ⊗ 𝐵 ⊗ 𝑁) C (𝑁 ⊗ 𝐶 ⊗ 𝑁)),

𝜂𝑁 : V(𝐴; 𝑁) id−→ V(𝐴; 𝑁).

The monad has multiplication 𝜇 with component at V the following isomorphism 𝜇V : NNV � NV
of produoidal categories (witnessing that the monad is idempotent). The underlying functor is identity on
objects, and acts on morphisms by

NNV(𝐴; 𝐵) = NV(𝐴; 𝑁 ⊗𝑁 𝐵 ⊗𝑁 𝑁)
𝜆 , 𝜌
� NV(𝐴; 𝐵).

The following natural transformations make this a produoidal functor:

𝜇⊗ : NNV(𝐴; 𝐵 ⊗𝑁𝑁 𝐶) = NV(𝐴; 𝑁 ⊗𝑁 𝐵 ⊗𝑁 𝑁 ⊗𝑁 𝐶 ⊗𝑁 𝑁)
𝜆 , 𝜌
� NV(𝐴; 𝐵 ⊗𝑁 𝐶),

𝜇𝑁 = 𝜇𝐼 : NNV(𝐴; 𝑁) = NV(𝐴; 𝑁),

𝜇C : NNV(𝐴; 𝐵 C𝑁𝑁 𝐶) = NV(𝐴; (𝑁 ⊗𝑁 𝐵 ⊗𝑁 𝑁) C𝑁 (𝑁 ⊗𝑁 𝐶 ⊗𝑁 𝑁))
𝜆 , 𝜌
� NV(𝐴; 𝐵 C𝑁 𝐶).

.
Finally we verify the monad laws. 𝜂NV # 𝜇V is identity on objects and on morphisms applies left and

right unitors followed by their inverses, thus has underlying functor equal to the identity. The components
of the natural transformations are also identities, since the laxator 𝜑0 is an identity for NV, and they are
otherwise composed of unitors followed by their inverses, and similarly for the other unit law (using the
unitality coherence equations of Figure 36). 𝜇NV # 𝜇V and N𝜇V # 𝜇V are identity on objects and amount
to applying left and right unitors twice on morphisms, and similarly for their components. �

Lemma E.4. A produoidal category V has exactly one algebra structure for the normalization monad
when it is normal, and none otherwise.

Proof. Let (𝑓map, 𝑓⊗, 𝑓𝐼 , 𝑓C, 𝑓𝑁) : NV → V be an algebra. This means that the following commutative
diagrams with the unit and multiplication of the normalization monad must commute.

V NV NNV NV

V NV V

𝜂

id
𝑓

𝜇

N 𝑓 𝑓

𝑓

Now, consider how the laxator 𝜓0 : V(•; 𝐼) → V(•; 𝑁) is transported by these maps.

V(•; 𝑁)

V(•; 𝐼) V(•; 𝑁) V(•; 𝐼)

V(•; 𝑁) V(•; 𝑁)

𝑓𝐼
id

𝜂𝐼

𝜓0

id
𝑓𝑁

𝜓0
id

id

We conclude that 𝜂𝐼 = 𝜓0, but also that 𝑓𝑁 = id. As a consequence, 𝜓0 is invertible and 𝑓𝐼 must be its
inverse. We have shown that the produoidal category V must be normal.

We will now show that this already determines all of the functor 𝑓 . We know that 𝜂⊗, 𝜂C, 𝜂map are
isomorphisms because they are constructed from the unitors, associators, and the laxator 𝜓0, which is an
isomorphism in this case. This determines that 𝑓⊗, 𝑓C, 𝑓map must be their inverses. By construction, these
satisfy all coherence morphisms. �

Theorem E.5 (From Theorem 5.4). Normalization determines an adjunction between produoidal categories
and normal produoidal categories,

N : Produo
 nProduo : U

That is, NV is the free normal produoidal category over V.

Proof. We know that the algebras for the normalization monad are exactly the normal produoidal categories
(Lemma E.4). We also know that the normalization monad is idempotent (Theorem 5.3). This implies that
the forgetful functor from its category of algebras is fully faithful, and thus, the algebra morphisms are
exactly the produoidal functors. As a consequence, the canonical adjunction to the category of algebras of
the monad is exactly an adjunction to the category of normal produoidal categories. �

E.2 Symmetric Normalization
Theorem E.6 (From Theorem 5.6). Let V⊗,𝐼 ,C,𝑁 be a symmetric produoidal category. The profunctor
N 𝜎V(•; •) = V(•; 𝑁 ⊗ •) forms a promonad. Moreover, the Kleisli category of this promonad is a normal
symmetric produoidal category with the following sequential and parallel splits and units.

N 𝜎V(𝐴; 𝐵) = V(𝐴; 𝑁 ⊗ 𝐵);
N 𝜎V(𝐴; 𝐵 ⊗𝑁 𝐶) = V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝐶);
N 𝜎V(𝐴; 𝐵 C𝑁 𝐶) = V(𝐴; (𝑁 ⊗ 𝐵) C (𝑁 ⊗ 𝐶));

N 𝜎V(𝐴; 𝑁) = V(𝐴; 𝑁);
N 𝜎V(𝐴; 𝐼) = V(𝐴; 𝑁).

Proof. The unit and multiplication of the promonad are given in essentially the same way as in the proof of
Theorem E.1. Likewise the associators, unitors and laxators of N 𝜎V are given in essentially the same way,
though one must use the fact that V is symmetric. We need additionally a symmetry natural isomorphism
for N 𝜎V. Its components are defined by,

N 𝜎V(𝐴; 𝐵 ⊗ 𝐶) = (by definition)

V(𝐴; 𝑁 ⊗ 𝐵 ⊗ 𝐶) � (by associativity)∫ 𝑋 ∈V
V(𝐴; 𝑁 ⊗ 𝑋) × V(𝑋; 𝐵 ⊗ 𝐶) � (by symmetry of V)∫ 𝑋 ∈V
V(𝐴; 𝑁 ⊗ 𝑋) × V(𝑋;𝐶 ⊗ 𝐵) � (by associativity)

V(𝐴; 𝑁 ⊗ 𝐶 ⊗ 𝐵) = (by definition)

N 𝜎V(𝐴;𝐶 ⊗ 𝐵).

These satisfy hexagon and symmetry identities because these are satisfied by V, and we only use
symmetries and coherences of V. Thus we have a normal symmetric produoidal category N 𝜎V. �

Definition E.7 (Symmetric produoidal functor). A symmetric produoidal functor is a produoidal functor
𝐹 : V→W that moreover preserves the symmetry, in that 𝐹⊗ # 𝜎V = 𝜎W # 𝐹⊗. We denote by SymProduo
the category of symmetric produoidal categories and symmetric produoidal functors.

Proposition E.8. Symmetric normalization extends to a endofunctor of symmetric produoidal categories
N 𝜎 : SymProduo→ SymProduo.

Proof. The construction is essentially the same as in Proposition E.2. The only thing left to check is that
N 𝜎𝐹 there constructed preserves symmetries whenever 𝐹 does (see Theorem E.6). This is because the
symmetry of N 𝜎V is constructed out of associativity and symmetries of V, which N 𝜎𝐹⊗, constructed
itself out of 𝐹⊗, associativity, and symmetries of V, must preserve. �

Theorem E.9. The functor N 𝜎 : SymProduo → SymProduo from Proposition E.2 is an idempotent
monad.

Proof. The construction is again essentially the same as in Theorem E.3. It is left to check that the
unit and multiplication constructed in this way preserve the symmetries. Indeed, 𝜂𝜎 : V → N 𝜎V is
symmetric produoidal because 𝜂⊗ is constructed out of natural associators and laxators that commute with
the symmetry. �

Lemma E.10. A symmetric produoidal category V has exactly one algebra structure for the symmetric
normalization monad when it is normal, and none otherwise.

Proof. The proof essentially follows the same reasoning as Lemma E.4, replacing the construction with
the symmetric version and the previous lemmas. �

Theorem E.11 (From Theorem 5.7). Symmetric normalization determines an adjunction between symmetric
produoidal categories and normal symmetric produoidal categories,

N 𝜎 : SymProduo
 nSymProduo : U

Where we define the category of normal symmetric produoidal categories, nSymProduo, to use as functors
the symmetric produoidal functors, adquiring a full forgetful functor U.

That is, N 𝜎V is the free symmetric normal produoidal category over the symmetric produoidal category
V.

Proof. The proof essentially follows Theorem E.5, now using the previous lemmas and Lemma E.10. �

E.3 Normalization of duoidals and normalization of produoidals
We conjecture that the normalization of a produoidal category could still be seen to arise from the

normalization procedure for duoidal categories outlined by Garner and López Franco [GF16]. Every
produoidal category V induces a closed duoidal structure on its presheaf category V̂ := [Vop, Set]: indeed,
by a result of Day, any promonoidal structure induces a closed monoidal structure on the presheaf category
[Day70b], [Day70a]; furthermore, one can confirm that the two closed monoidal structures on V̂ interact
in such a way as to make the category duoidal (Theorem I.6).

Normalizing the duoidal V̂ yields the category of algebras EM(NV) for the promonad NV – or,
equivalently, the category of algebras for the cocontinuous monad induced by NV on V̂. EM(NV) is
now normal duoidal, and furthermore the closure of the tensors on V̂ carries across to make EM(NV)
also closed. Now, one notes that we have the following isomorphism EM(NV) � [NVop, Set], that is, the
category of algebras is the presheaf category of the Kleisli object NV of the promonad in Prof. Therefore,
the closed monoidal structures of EM(NV) must correspond to promonoidal structures of NV and these
interact so as to make NV produoidal.

Appendix F
Monoidal Context

𝑓

𝑔

𝑓

𝑘

ℎ

𝑔

; ;

𝑓

𝑔

≺

ℎ

𝑘

=;

(𝑖) (𝑖𝑖𝑖)(𝑖𝑖)

Fig. 29: Generic monoidal context (i), identity (ii) and composition (iii).

Remark F.1 (Algebra of monoidal contexts). We explicitly state all the operations that form the normal
produoidal algebra of monoidal contexts. We do so using 1-dimensional notation for compactness, but we
do believe the conceptual picture is clearer when they are translated into 2-dimensional string diagrams.

(Identity)
(id𝐴 # � # id𝐵)

(Composition)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (ℎ # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑘) =
(𝑓 # (id𝑀 ⊗ ℎ ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑘 ⊗ id𝑁) # 𝑔),

(Unit action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ ℎ = 𝑓 # (id𝑀 ⊗ ℎ ⊗ id𝑁) # 𝑔,

(Seq. split first action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ,

(Seq. split second action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑢 ⊗ id𝐿) # (id𝐾 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝐿) # (id𝐾 ⊗ 𝑣 ⊗ id𝐿) # ℎ,

(Seq. split third action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣 # (id𝑅 ⊗ � ⊗ id𝑆) # 𝑤) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁) # (id𝑀 ⊗𝑅 ⊗ � ⊗ id𝑆⊗𝑁)
(id𝑀 ⊗ 𝑤 ⊗ id𝑁) # 𝑔,

(Seq. left associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝛼1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣 # (id𝑅 ⊗ � ⊗ id𝑆) # 𝑤) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁) # (id𝑀 ⊗𝑅 ⊗ � ⊗ id𝑆⊗𝑁)
(id𝑀 ⊗ 𝑤 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ,

𝑓

𝑔

ℎ

𝑓

𝑔

ℎ

𝑚

𝑚′

𝑛

𝑛′

𝑚 𝑛

𝑚′ 𝑛′

=

Fig. 30: Dinaturality of sequential splits of monoidal contexts.

𝑓

𝑔

𝑓

𝑔

𝑚 𝑛 𝑜

𝑜𝑛𝑚
=

Fig. 31: Parallel splits for monoidal contexts.

(Seq. right associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝛼2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣 # (id𝑅 ⊗ � ⊗ id𝑆) # 𝑤) =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑢 ⊗ id𝐿) # (id𝐾 ⊗𝑃 ⊗ � ⊗ id𝑅⊗𝐿) # (id𝐾 ⊗ 𝑣 ⊗ id𝐿)
(id𝐾 ⊗𝑅 ⊗ � ⊗ id𝑆⊗𝐿) # (id𝐿 ⊗ 𝑤 ⊗ id𝐿) # ℎ,

(Seq. left unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝜆 𝑢 =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ,

(Seq. right unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ) ≺𝜌 𝑢 =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑢 ⊗ id𝐿) # ℎ,

(Par. split first action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺ 1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄⊗𝑁 ⊗ � ⊗ id𝑂) # (id𝑀 ⊗ 𝑣 ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # 𝑔,

(Par. split second action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺ 2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄) # 𝑣) =

𝑓 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑢 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑃 ⊗ � ⊗ id𝑂⊗𝑄) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # 𝑔,

(Par. split third action)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁) # (id𝑀 ⊗ 𝑤 ⊗ id𝑁) # 𝑔,

(Par. left associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝛼1 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑣) =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ⊗𝑂) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁 ⊗ � ⊗ id𝑂)
(id𝑀 ⊗ 𝑣 ⊗ id𝑁 ⊗𝑌 ⊗𝑂) # 𝑔,

(Par. right associativity)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝛼2 (𝑢 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑣) =

𝑓 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑢 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑂)
(id𝑀 ⊗𝑌 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # 𝑔,

(Par. left unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝜆 𝑢 =

𝑓 # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ � ⊗ id𝑂) # 𝑔 =

𝑓 # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ � ⊗ id𝑂) # (id𝑀 ⊗ 𝑢 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # 𝑔,

(Par. right unitor)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔) ≺𝜌 𝑣 =

𝑓 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # 𝑔 =

𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑣 ⊗ id𝑂) # 𝑔,

(Laxator, left side)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝑂) # 𝑔)

≺ 𝜓1 (𝑗0 # (id𝑈 ⊗ � ⊗ id𝑉) # 𝑗1 # (id𝑈 ′ ⊗ � ⊗ id𝑉 ′) # 𝑗2)
≺ 𝜓2 (𝑘0 # (id𝑊 ⊗ � ⊗ id𝑇) # 𝑘1 # (id𝑊 ′ ⊗ � ⊗ id𝑇 ′) # 𝑘2) =

𝑓 # (id𝑀 ⊗ 𝑗0 ⊗ id𝑁 ⊗ 𝑘0 ⊗ id𝑂) # (id𝑀 ⊗𝑈 ⊗ � ⊗ id𝑉 ⊗𝑁 ⊗𝑈 ′ ⊗ � ⊗ id𝑉 ′⊗𝑂)
(id𝑀 ⊗ 𝑗1 ⊗ id𝑁 ⊗ 𝑘1 ⊗ id𝑂) # (id𝑀 ⊗𝑊 ⊗ � ⊗ id𝑇 ⊗𝑁 ⊗𝑊 ′ ⊗ � ⊗ id𝑇 ′⊗𝑂)
(id𝑀 ⊗ 𝑗2 ⊗ id𝑁 ⊗ 𝑘2 ⊗ id𝑂) # 𝑔,

(Laxator, right side)
(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ � ⊗ id𝐿) # ℎ)

≺ 𝜓1 (𝑗0 # (id𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅) # 𝑗1)
≺ 𝜓2 (𝑘0 # (id𝑃′ ⊗ � ⊗ id𝑄′ ⊗ � ⊗ id𝑅′) # 𝑘1) =

𝑓 # (id𝑀 ⊗ 𝑗0 ⊗ id𝑁) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁)
(id𝑀 ⊗ 𝑗1 ⊗ id𝑁) # 𝑔 # (id𝐾 ⊗ 𝑘0 ⊗ id𝐿) # (id𝐾 ⊗𝑃′ ⊗ � ⊗ id𝑄′ ⊗ � ⊗ id𝑅′⊗𝐿)
(id𝐾 ⊗ 𝑘1 ⊗ id𝐿) # ℎ.

Remark F.2. In the following derivations, we understand that an isolated (�) actually means (id𝐼 ⊗�⊗ id𝐼).

Proposition F.3 (From Proposition 6.2). Monoidal contexts form a category. Composition of monoidal
contexts is associative and unital.

Proof. We first check that the composition of monoidal contexts is associative.

((𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑓 ′ # (id𝑀 ′ ⊗ � ⊗ id𝑁 ′) # 𝑔′)) ≺ (𝑓 ′′ # (id𝑀 ′′ ⊗ � ⊗ id𝑁 ′′) # 𝑔′′) =

(𝑓 # (id𝑀 ⊗ 𝑓 ′ ⊗ id𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ � ⊗ id𝑁 ′⊗𝑁) # (id𝑀 ⊗ 𝑔′ ⊗ id𝑁) # 𝑔)≺
(𝑓 ′′ # (id𝑀 ′′ ⊗ � ⊗ id𝑁 ′′) # 𝑔′′) =

𝑓 # (id𝑀 ⊗ 𝑓 ′ ⊗ id𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ 𝑓 ′′ ⊗ id𝑁 ⊗𝑁 ′)
(id𝑀 ⊗𝑀 ′⊗𝑀 ′′ ⊗ � ⊗ id𝑁 ′′⊗𝑁 ′⊗𝑁) # (id𝑀 ⊗𝑀 ′ ⊗ 𝑔′′ ⊗ id𝑁 ′⊗𝑁) # (id𝑁 ⊗ 𝑔′ ⊗ id𝑁) # 𝑔 =

𝑓 # (id𝑀 ⊗ (𝑓 ′ # (id𝑀 ′ ⊗ 𝑓 ′′ ⊗ id𝑁 ′)) ⊗ id𝑁)
(id𝑀 ⊗𝑀 ′⊗𝑀 ′′ ⊗ � ⊗ id𝑁 ′′⊗𝑁 ′⊗𝑁) # (id𝑀 ⊗ ((id𝑀 ′ ⊗ 𝑔′′ ⊗ id𝑁 ′) # 𝑔′) ⊗ id𝑁) # 𝑔 =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (𝑓 ′ # (id𝑀 ′ ⊗ 𝑓 ′′ ⊗ id𝑁 ′)#
(id𝑀 ′⊗𝑀 ′′ ⊗ � ⊗ id𝑁 ′′⊗𝑁 ′) # (id𝑀 ′ ⊗ 𝑔′′ ⊗ id𝑁 ′) # 𝑔′) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ ((𝑓 ′ # (id𝑀 ′ ⊗ � ⊗ id𝑁 ′) # 𝑔′) ≺ (𝑓 ′′ # (id𝑀 ′′ ⊗ � ⊗ id𝑁 ′′) # 𝑔′′))

We now check left unitality of the identities,

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) ≺ (id𝑋 # (id𝐼 ⊗ � ⊗ id𝐼) # id𝑌) =

(𝑓 # (id𝑀 ⊗ id𝑋 ⊗ id𝑁) # (id𝑀 ⊗ � ⊗ id𝑁) # (id𝑀 ⊗ id𝑋 ⊗ id𝑁) # 𝑔) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔),

and right unitality,

(id𝐴 # (id𝐼 ⊗ � ⊗ id𝐼) # id𝐵) ≺ (𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔) =

(id𝐴 # (id𝐼 ⊗ 𝑓 ⊗ id𝐼) # (id𝑀 ⊗ � ⊗ id𝑁) # (id𝐼 ⊗ 𝑔 ⊗ id𝐼) # id𝐵) =

(𝑓 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑔).

This concludes the proof. �

Proposition F.4 (From Proposition 6.5). The category of monoidal contexts forms a normal produoidal
category with its units, sequential and parallel splits.

Proof. Lemmas F.5 to F.7 construct the associators and unitors for the sequential promonoidal structure,
and Lemmas F.8 to F.10 define the associators and unitors for the parallel promonoidal structure. As they
are all constructed with Yoneda isomorphisms, they must satisfy the coherence equations. Lemma F.11
defines the laxators, again using only Yoneda isomorphisms and composition in C. For concision, our
proofs freely elide the tensor product of objects, writing 𝑋𝑌 for 𝑋 ⊗ 𝑌 . �

Lemma F.5 (Monoidal contexts sequential associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

)
×MC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
�

∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

)
×MC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
: (≺𝛼1),

satisfying the coherence equations of produoidal categories. This isomorphism is defined on representatives
of the equivalence class as

(𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ � ⊗ id) # 𝑓2) ≺𝛼2 (𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2) =
((ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2) | (𝑘0 # (id ⊗ � ⊗ id) # 𝑘1 # (id ⊗ � ⊗ id) # 𝑘2))

if and only if

𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ 𝑔0 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑔1 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id) # 𝑓2 =

ℎ0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑘1 ⊗ id) # (id ⊗ � ⊗ id) # (id ⊗ 𝑘2 ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2.

Proof. Firstly, we construct an isomorphism between the left hand side and a set of quadruples of
morphisms. This isomorphism sends the pair

(𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ � ⊗ id) # 𝑓2) | (𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2)
to (𝑓0 # (id ⊗ � ⊗ id) # 𝑓1 # (id ⊗ 𝑔0 ⊗ id) # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id) # 𝑓2).

The isomorphism is constructed by the following coend derivation.∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

)
×MC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂,𝑃∈C
C(𝐴; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑂𝑈𝑃) × C(𝑂𝑉𝑃; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑀𝑋𝑁) ×MC

(
𝑀𝑌𝑁
𝐵 ; 𝑈𝑉

)
× C(𝑈;𝑂𝑋 ′𝑃) × C(𝑂𝑌 ′𝑃;𝑄𝑋 ′′𝑅) × C(𝑄𝑌 ′′𝑅;𝑉)

𝑦2
�∫ 𝑀,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C

C(𝐴; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑂𝑋 ′𝑃) × C(𝑂𝑌 ′𝑃;𝑄𝑋 ′′𝑅) × C(𝑄𝑌 ′′𝑅; 𝐵).

Now we construct an isomorphism between the right hand side and the same set of quadruples of
morphisms. This isomorphism sends the pair

(ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2) | (𝑘0 # (id ⊗ � ⊗ id) # 𝑘1 # (id ⊗ � ⊗ id) # 𝑘2))
to (ℎ0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id) # 𝑘1 # (id ⊗ � ⊗ id) # (id ⊗ 𝑘2 ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2).∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

)
×MC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂,𝑃∈C
C(𝐴; 𝑀𝑈𝑁) × C(𝑀𝑉𝑁;𝑂𝑋 ′′𝑃) × C(𝑂𝑌 ′′𝑃; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C
MC

(
𝐴

𝑂𝑋 ′′𝑃 ; 𝑈𝑉
)
× C(𝑂𝑌 ′′𝑃; 𝐵) × C(𝑈; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑄𝑋 ′𝑅) × C(𝑄𝑌 ′𝑅;𝑉)

𝑦2
�∫ 𝑀,𝑁 ,𝑂,𝑃,𝑄,𝑅∈C

C(𝐴; 𝑀𝑋𝑁) × C(𝑀𝑌𝑁;𝑄𝑋 ′𝑅) × C(𝑄𝑌 ′𝑅;𝑂𝑋 ′′𝑃) × C(𝑂𝑌 ′′𝑃; 𝐵).

Composing both isomorphisms, we obtain the desired associator. Since it is composed exclusively from
Yoneda isomorphisms, it must satisfy the coherence equations of produoidal categories (Definition I.5). �

Lemma F.6 (Monoidal contexts sequential left unitor). We construct a natural isomorphism

(≺𝜆) :
∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 C 𝑋𝑌

)
×MC

(
𝑈
𝑉 ; 𝑁

)
�MC

(
𝐴
𝐵 ; 𝑋𝑌

)
,

satisfying the coherence equations of produoidal categories. This isomorphism is defined on representatives
of the equivalence class as

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ � ⊗ id𝐿) # 𝑓2) ≺𝜆 𝑔 =

𝑓0 # (id𝑀 ⊗ 𝑔 ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ � ⊗ id𝐿) # 𝑓2.

Proof. We need to prove that this function is well-defined and does indeed induce an isomorphism after
quotienting. We show this by constructing the isomorphism using coend calculus.∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 C 𝑋𝑌

)
×MC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅,𝑆∈C
C(𝐴; 𝑃𝑈𝑄) × C(𝑃𝑉𝑄; 𝑅𝑋𝑆) × C(𝑅𝑌𝑆; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈

𝑉
∈MC,𝑅,𝑆∈C
MC

(
𝐴

𝑅𝑋𝑆 ; 𝑈𝑉
)
× C(𝑅𝑌𝑆; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑁

) 𝑦2
�∫ 𝑅,𝑆∈C

C(𝐴; 𝑅𝑋𝑆) × C(𝑅𝑌𝑆; 𝐵) def
=

MC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

Since it is composed exclusively from Yoneda isomorphisms, it must satisfy the coherence equations of
produoidal categories (Definition I.5). �

Lemma F.7 (Monoidal contexts sequential right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

)
×MC

(
𝑈
𝑉 ; 𝑁

)
�MC

(
𝐴
𝐵 ; 𝑋𝑌

)
satisfying the coherence equations of produoidal categories. This isomorphism is defined on representatives
of the equivalence class as

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ � ⊗ id𝐿) # 𝑓2) ≺𝜌 𝑔 =

𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁) # 𝑓1 # (id𝐾 ⊗ 𝑔 ⊗ id𝐿) # 𝑓2.

Proof. As above, we do this by coend calculus:∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

)
×MC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅,𝑆∈C
C(𝐴; 𝑃𝑋𝑄) × C(𝑃𝑌𝑄; 𝑅𝑈𝑆) × C(𝑅𝑉𝑆; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅,𝑆∈C
C(𝐴; 𝑃𝑋𝑄) ×MC

(
𝑃𝑌𝑄
𝐵

; 𝑈𝑉
)
×MC

(
𝑈
𝑉 ; 𝑁

) 𝑦2
�∫ 𝑅,𝑆∈C

C(𝐴; 𝑅𝑋𝑆) × C(𝑅𝑌𝑆; 𝐵) def
=

MC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

Since it is composed exclusively from Yoneda isomorphisms, it must satisfy the coherence equations of
produoidal categories (Definition I.5). �

Lemma F.8 (Monoidal contexts parallel associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
�

∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

)
×MC

(
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
: (≺𝛼1)

exclusively from Yoneda isomorphisms. This isomorphism is defined on representatives of the equivalence
class as

(𝑓0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑓1) ≺𝛼1 (𝑔0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑔1) =

(ℎ0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # ℎ1) | (𝑗0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑗1)

if and only if

𝑓0 # (id𝑀 ⊗ 𝑔0 ⊗ id𝑁 ⊗𝑋 ⊗𝑂) # (id𝑀 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑁 ⊗ � ⊗ id𝑂) # (id𝑀 ⊗ 𝑔1 ⊗ id𝑁 ⊗𝑌 ⊗𝑂) # 𝑓1 =

ℎ0 # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑗0 ⊗ id𝑂) # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑃 ⊗ � ⊗ id𝑄 ⊗ � ⊗ id𝑅⊗𝑂) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ 𝑗1 ⊗ id𝑂) # ℎ1,

Proof. The left hand side is isomorphic to the following set,∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

) def
=∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑁 ⊗ 𝑈 ⊗ 𝑂) × C(𝑀 ⊗ 𝑌 ⊗ 𝑁 ⊗ 𝑉 ⊗ 𝑂; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

) 𝑦2
�∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄∈C
C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑃) × C(𝑃; 𝑁 ⊗ 𝑈 ⊗ 𝑂) × C(𝑀 ⊗ 𝑌 ⊗ 𝑄; 𝐵)

× C(𝑁 ⊗ 𝑉 ⊗ 𝑂;𝑄) ×MC
(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

) def
=

∫ 𝑈
𝑉
∈MC,𝑀 ,𝑀 ′,𝑁 ′,𝑂′,𝑃,𝑄∈C
C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑃) ×MC

(
𝑃
𝑄 ; 𝑈𝑉

)
× C(𝑀 ⊗ 𝑌 ⊗ 𝑄; 𝐵) × C(𝑈; 𝑀 ′ ⊗ 𝑋 ′ ⊗ 𝑁 ′ ⊗ 𝑋 ′′ ⊗ 𝑂 ′)

× C(𝑀 ′ ⊗ 𝑌 ′ ⊗ 𝑁 ′ ⊗ 𝑌 ′′ ⊗ 𝑂 ′;𝑉)
𝑦2
�∫ 𝑀,𝑀 ′,𝑁 ′,𝑂′∈C

C(𝐴; 𝑀 ⊗ 𝑋 ⊗ 𝑀 ′ ⊗ 𝑋 ′ ⊗ 𝑁 ′ ⊗ 𝑋 ′′ ⊗ 𝑂 ′) × C(𝑀 ⊗ 𝑌 ⊗ 𝑀 ′ ⊗ 𝑌 ′ ⊗ 𝑁 ′ ⊗ 𝑌 ′′ ⊗ 𝑂 ′; 𝐵).

In the same way, the right hand side is isomorphic to the following set,∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

)
×MC

(
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) def
=∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑈 ⊗ 𝑁 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑀 ⊗ 𝑉 ⊗ 𝑁 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵) ×MC

(
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) 𝑦1
�∫ 𝑈

𝑉
∈MC,𝑀 ,𝑁 ,𝑂,𝑃,𝑄∈C
C(𝑃; 𝑀 ⊗ 𝑈 ⊗ 𝑁) × C(𝐴; 𝑃 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑀 ⊗ 𝑉 ⊗ 𝑁;𝑄) def

=

× C(𝑄 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵) ×MC
(
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

) 𝑦1
�∫ 𝑈

𝑉
∈MC,𝑀 ′,𝑁 ′,𝑂′,𝑂,𝑃,𝑄∈C
MC

(
𝑃
𝑄 ; 𝑈𝑉

)
× C(𝐴; 𝑃 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑄 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵) def

=

× C(𝑈; 𝑀 ′ ⊗ 𝑋 ⊗ 𝑁 ′ ⊗ 𝑋 ′ ⊗ 𝑂 ′) × C(𝑀 ′ ⊗ 𝑌 ⊗ 𝑁 ′ ⊗ 𝑌 ′ ⊗ 𝑂 ′;𝑉)
𝑦1
�∫ 𝑀 ′,𝑁 ′,𝑂′,𝑂,𝑃,𝑄∈C

C(𝐴; 𝑃 ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑄 ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵)

× C(𝑃; 𝑀 ′ ⊗ 𝑋 ⊗ 𝑁 ′ ⊗ 𝑋 ′ ⊗ 𝑂 ′) × C(𝑀 ′ ⊗ 𝑌 ⊗ 𝑁 ′ ⊗ 𝑌 ′ ⊗ 𝑂 ′;𝑄)
𝑦1
�∫ 𝑀 ′,𝑁 ′,𝑂′,𝑂∈C

C(𝐴; 𝑀 ′ ⊗ 𝑋 ⊗ 𝑁 ′ ⊗ 𝑋 ′ ⊗ 𝑂 ′ ⊗ 𝑋 ′′ ⊗ 𝑂) × C(𝑀 ′ ⊗ 𝑌 ⊗ 𝑁 ′ ⊗ 𝑌 ′ ⊗ 𝑂 ′ ⊗ 𝑌 ′′ ⊗ 𝑂; 𝐵).

Composing both isomorphisms, we obtain the desired associator. �

Lemma F.9 (Monoidal contexts parallel left unitor). We construct a natural isomorphism

(≺𝜆) :
∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋𝑌

)
×MC

(
𝑈
𝑉 ; 𝑁

)
�MC

(
𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms. This isomorphism is defined by

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝐻) # 𝑓1) ≺𝜆 𝑔 = 𝑓0 # (id𝑀 ⊗ 𝑔 ⊗ id𝑁 ⊗𝑋 ′⊗𝑂) # (id𝑀 ⊗𝑌 ⊗𝑁 ⊗ � ⊗ id𝑂) # 𝑓1.

Proof. ∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋𝑌

)
×MC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑃 ⊗ 𝑈 ⊗ 𝑄 ⊗ 𝑋 ⊗ 𝑅) × C(𝑃 ⊗ 𝑉 ⊗ 𝑄 ⊗ 𝑌 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉)

𝑦1
�∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅,𝑆,𝑇 ∈C
C(𝐴; 𝑆 ⊗ 𝑋 ⊗ 𝑅) × C(𝑆; 𝑃 ⊗ 𝑈 ⊗ 𝑄) × C(𝑃 ⊗ 𝑉 ⊗ 𝑄;𝑇)

× C(𝑇 ⊗ 𝑌 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉) def
=∫ 𝑈

𝑉
∈MC,𝑅,𝑆,𝑇 ∈C
C(𝐴; 𝑆 ⊗ 𝑋 ⊗ 𝑅) ×MC

(
𝑆
𝑇 ; 𝑈𝑉

)
× C(𝑇 ⊗ 𝑌 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉)

𝑦1
�∫ 𝑆,𝑅∈C

C(𝐴; 𝑆 ⊗ 𝑋 ⊗ 𝑅) × C(𝑆 ⊗ 𝑌 ⊗ 𝑅; 𝐵) def
=

MC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

�

Lemma F.10 (Monoidal contexts parallel right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑈

𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑈
𝑉 ; 𝑁

)
�MC

(
𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms. This isomorphism is defined by

(𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗ � ⊗ id𝐻) # 𝑓1) ≺𝜌 𝑔 = 𝑓0 # (id𝑀 ⊗ � ⊗ id𝑁 ⊗𝑌 ′⊗𝑂) # (id𝑀 ⊗𝑋 ⊗𝑁 ⊗ 𝑔 ⊗ id𝑂) # 𝑓1.

Proof. We construct the isomorphism by the following coend derivation,∫ 𝑈
𝑉
∈MC
MC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑄 ⊗ 𝑈 ⊗ 𝑅) × C(𝑃 ⊗ 𝑌 ⊗ 𝑄 ⊗ 𝑉 ⊗ 𝑅; 𝐵) × C(𝑈;𝑉)

𝑦1
�∫ 𝑈

𝑉
∈MC,𝑃,𝑄,𝑅,𝑆,𝑇 ∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑆) × C(𝑆;𝑄 ⊗ 𝑈 ⊗ 𝑅) × C(𝑄 ⊗ 𝑉 ⊗ 𝑅;𝑇)

× C(𝑃 ⊗ 𝑌 ⊗ 𝑇 ; 𝐵) × C(𝑈;𝑉) def
=∫ 𝑈

𝑉
∈MC,𝑃,𝑆,𝑇 ∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑆) ×MC

(
𝑆
𝑇 ; 𝑈𝑉

)
× C(𝑃 ⊗ 𝑌 ⊗ 𝑇 ; 𝐵) × C(𝑈;𝑉)

𝑦1
�∫ 𝑃,𝑇 ∈C

C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑇) × C(𝑃 ⊗ 𝑌 ⊗ 𝑇 ; 𝐵) def
=

MC
(
𝐴
𝐵 ; 𝑋𝑌

)
.

This concludes the proof. �

Lemma F.11 (Monoidal contexts laxators). We construct the following morphisms

𝜓2 :MC
(
𝐴
𝐵 ;

(
𝑋
𝑌 C

𝑋 ′
𝑌 ′

)
⊗

(
𝑈
𝑉 C

𝑈 ′
𝑉 ′

))
→MC

(
𝐴
𝐵 ;

(
𝑋
𝑌 ⊗ 𝑈𝑉

)
C

(
𝑋 ′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

))
𝜓0 :MC

(
𝐴
𝐵 ; 𝐼

)
→MC

(
𝐴
𝐵 ; 𝐼 C 𝐼

)
𝜑2 :MC

(
𝐴
𝐵 ; 𝑁 ⊗ 𝑁

)
→MC

(
𝐴
𝐵 ; 𝑁

)
𝜑0 :MC

(
𝐴
𝐵 ; 𝐼

)
→MC

(
𝐴
𝐵 ; 𝑁

)
.

exclusively from composition in C and Yoneda isomorphisms. The laxator 𝜓2 is defined by stating that the
following equation holds

(𝑓0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑓1)
≺ 𝜓1 (𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2)
≺ 𝜓2 (ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2) =

(𝑗0 # (id ⊗ � ⊗ id) # 𝑗1 # (id ⊗ � ⊗ id) # 𝑗2) |
(𝑘0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑘1) |
(𝑙0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑙1)

if and only if

𝑓0 # (id ⊗ 𝑔0 ⊗ id ⊗ ℎ0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔1 ⊗ id ⊗ ℎ1 ⊗ id)#
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id ⊗ ℎ2 ⊗ id) # 𝑓1 =

𝑗0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑘1 ⊗ id) # 𝑗1 # (id ⊗ 𝑙0 ⊗ id)#
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑙1 ⊗ id) # 𝑗2.

Furthermore, since MC is normal, 𝜓0, 𝜑2, and 𝜑0 are isomorphisms.

Proof. Consider the right hand side of 𝜓2. It is isomorphic to the following∫ 𝑃
𝑄,
𝑃′
𝑄′∈MC
MC

(
𝐴
𝐵 ; 𝑃𝑄 C

𝑃′
𝑄′

)
×MC

(
𝑃
𝑄 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑃′
𝑄′ ; 𝑋

′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

)
def
=∫ 𝑃

𝑄,
𝑃′
𝑄′∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑃 ⊗ 𝑁) × C(𝑀 ⊗ 𝑄 ⊗ 𝑁; 𝑀 ′ ⊗ 𝑃′ ⊗ 𝑁 ′) × C(𝑀 ′ ⊗ 𝑄 ′ ⊗ 𝑁 ′; 𝐵)

×MC
(
𝑃
𝑄 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑃′
𝑄′ ; 𝑋

′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

)
def
=∫ 𝑃

𝑄,
𝑃′
𝑄′∈MC,𝑀 ,𝑁 ,𝑂∈C
C(𝐴; 𝑀 ⊗ 𝑃 ⊗ 𝑁) ×MC

(
𝑀 ⊗𝑄⊗𝑁

𝐵
; 𝑃
′

𝑄′

)
×MC

(
𝑃
𝑄 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
×MC

(
𝑃′
𝑄′ ; 𝑋

′
𝑌 ′ ⊗ 𝑈

′
𝑉 ′

)
𝑦1
�∫ 𝑃

𝑄∈MC,𝑀 ,𝑁 ,𝑂,𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 ∈C
C(𝐴; 𝑀 ⊗ 𝑃 ⊗ 𝑁) × C(𝑃;𝐶 ⊗ 𝑋 ⊗ 𝐷 ⊗ 𝑈 ⊗ 𝐸) × C(𝐶 ⊗ 𝑌 ⊗ 𝐷 ⊗ 𝑉 ⊗ 𝐸 ;𝑄)×

C(𝑀 ⊗ 𝑄 ⊗ 𝑁; 𝐹 ⊗ 𝑋 ′ ⊗ 𝐺 ⊗ 𝑈 ′ ⊗ 𝐻) × C(𝐹 ⊗ 𝑌 ′ ⊗ 𝐺 ⊗ 𝑉 ′ ⊗ 𝐻; 𝐵) def
=∫ 𝑃

𝑄,∈MC,𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 ∈C
MC

(
𝐴

𝐹 ⊗𝑋 ′⊗𝐺⊗𝑈 ′′⊗𝐻 ; 𝑃𝑄
)
× C(𝑃;𝐶 ⊗ 𝑋 ⊗ 𝐷 ⊗ 𝑈 ⊗ 𝐸)

× C(𝐶 ⊗ 𝑌 ⊗ 𝐷 ⊗ 𝑉 ⊗ 𝐸 ;𝑄) × C(𝐹 ⊗ 𝑌 ′ ⊗ 𝐺 ⊗ 𝑉 ′ ⊗ 𝐻; 𝐵)
𝑦1
�∫ 𝐶,𝐷,𝐸,𝐹 ,𝐺,𝐻 ∈C

C(𝐴;𝐶 ⊗ 𝑋 ⊗ 𝐷 ⊗ 𝑈 ⊗ 𝐸) × C(𝐶 ⊗ 𝑌 ⊗ 𝐷 ⊗ 𝑉 ⊗ 𝐸 ; 𝐹 ⊗ 𝑋 ′ ⊗ 𝐺 ⊗ 𝑈 ′ ⊗ 𝐻)

× C(𝐹 ⊗ 𝑌 ′ ⊗ 𝐺 ⊗ 𝑉 ′ ⊗ 𝐻; 𝐵).

This isomorphism sends an element (𝑗0 # (id⊗�⊗ id) # 𝑗1 # (id⊗�⊗ id) # 𝑗2 | 𝑘0 # (id⊗�⊗ id⊗�⊗ id) # 𝑘1 |
𝑙0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑙1) to 〈 𝑗0 # (id ⊗ 𝑘0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑘1 ⊗ id) # 𝑗1 # (id ⊗ 𝑙0 ⊗ id) #
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑙1 ⊗ id) # 𝑗2〉. Define a map from the left hand side of 𝜓2 to this set, sending
a triple

(𝑓0 # (id ⊗ � ⊗ id ⊗ � ⊗ id) # 𝑓1 |
𝑔0 # (id ⊗ � ⊗ id) # 𝑔1 # (id ⊗ � ⊗ id) # 𝑔2 |
ℎ0 # (id ⊗ � ⊗ id) # ℎ1 # (id ⊗ � ⊗ id) # ℎ2)

↦→
𝑓0 # (id ⊗ 𝑔0 ⊗ id ⊗ ℎ0 ⊗ id) # (id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔1 ⊗ id ⊗ ℎ1 ⊗ id)#
(id ⊗ � ⊗ id ⊗ � ⊗ id) # (id ⊗ 𝑔2 ⊗ id ⊗ ℎ2 ⊗ id) # 𝑓1.

Now composing this map with the isomorphism yields the desired morphism 𝜓2. The remaining laxators
𝜓0, 𝜑2, and 𝜑0 are isomorphisms that arise from applications of unitality or just as identities. �

Theorem F.12 (From Theorem 6.6). Monoidal contexts are the free normalization of the cofree produoidal
category over a category.

Proof. We already know that the normalization procedure yields the free normalization over a produoidal
category. It is only left to note that this is exactly the category we have explicitly constructed in this section.

This amounts to proving that the produoidal category of monoidal contexts is precisely the normalization
of the produoidal category of spliced arrows. We do so for morphisms, the rest of the proof is similar.

NSC
(
𝐴
𝐵; 𝑋𝑌

) def
=

SC
(
𝐴
𝐵; 𝑁 ⊗ 𝑋𝑌 ⊗ 𝑁

) def
=∫ 𝑈

𝑉
,𝑈
′

𝑉 ;∈SC
SC

(
𝐴
𝐵;𝑈𝑉 ⊗ 𝑋𝑌 ⊗ 𝑈

′
𝑉 ′

)
× SC

(
𝑈
𝑉 ; 𝑁

)
× SC

(
𝑈 ′
𝑉 ′; 𝑁

) def
=∫ 𝑈

𝑉
,𝑈
′

𝑉 ′
∈SC
C(𝐴;𝑈 ⊗ 𝑋 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑌 ⊗ 𝑉 ′; 𝐵) × C (𝑈;𝑉) × C (𝑈 ′;𝑉 ′) def

=

∫ 𝑈,𝑉 ,𝑈 ′,𝑉 ′∈C
C(𝐴;𝑈 ⊗ 𝑋 ⊗ 𝑈 ′) × C(𝑉 ⊗ 𝑌 ⊗ 𝑉 ′; 𝐵) × C (𝑈;𝑉) × C (𝑈 ′;𝑉 ′)

𝑦1
�∫ 𝑈,𝑈 ′∈C

C (𝐴;𝑈 ⊗ 𝑋 ⊗ 𝑈 ′) × C(𝑈 ⊗ 𝑌 ⊗ 𝑈 ′; 𝐵) def
=

MC
(
𝐴
𝐵; 𝑋𝑌

)
The rest of the profunctors follow a similar reasoning. �

Appendix G
Monoidal Lenses

Proposition G.1 (From Proposition 7.2). Monoidal lenses form a normal symmetric produoidal category
with the following morphisms, units, sequential and parallel splits.

LC
(
𝐴
𝐵 ; 𝑋𝑌

)
= C(𝐴; • ⊗ 𝑋) �C(• ⊗ 𝑌 ; 𝐵);

LC
(
𝐴
𝐵 ; 𝑁

)
= C(𝐴; 𝐵);

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊳ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋) �C(•1 ⊗ 𝑌 ; •2 ⊗ 𝑋 ′) �C(•2 ⊗ 𝑌 ′; 𝐵);

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; •1 ⊗ 𝑋 ⊗ 𝑋 ′) �C(•1 ⊗ 𝑌 ⊗ 𝑌 ′; 𝐵).

Proof. Lemmas G.2 and G.3 construct the associators, and Lemmas G.4 and G.5 define the unitors.
Lemma G.6 constructs the symmetry. As they are all constructed with Yoneda isomorphisms and
symmetries, they must satisfy the coherence equations. Finally, the laxators are constructed in much the
same way as in Lemma F.11. �

Lemma G.2 (Monoidal lenses sequential associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

)
× LC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

)
�

∫ 𝑈
𝑉
∈MC
LC

(
𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

)
× LC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
: (≺𝛼1)

exclusively from Yoneda isomorphisms.

Proof. Out of Yoneda reductions, we construct an isomorphism between the left hand side and a set of
quadruples of morphisms.∫ 𝑈

𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 C

𝑈
𝑉

)
× LC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=∫ 𝑈

𝑉
∈LC,𝑃,𝑄∈C
C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ;𝑄 ⊗ 𝑈) × C(𝑄 ⊗ 𝑉 ; 𝐵) × LC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ C

𝑋 ′′
𝑌 ′′

) def
=∫ 𝑈

𝑉
∈LC,𝑃,𝑄,𝑅∈C
C(𝐴; 𝑃 ⊗ 𝑋) × LC

(
𝑃⊗𝑌
𝐵 ; 𝑈𝑉

)
× C(𝑈;𝑄 ⊗ 𝑋 ′) × C(𝑄 ⊗ 𝑌 ′; 𝑅 ⊗ 𝑋 ′′) × C(𝑅 ⊗ 𝑌 ′′;𝑉)

𝑦2
�∫ 𝑃,𝑄,𝑅∈C

C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ;𝑄 ⊗ 𝑋 ′) × C(𝑄 ⊗ 𝑌 ′; 𝑅 ⊗ 𝑋 ′′) × C(𝑅 ⊗ 𝑌 ′′; 𝐵).

Out of Yoneda reductions, we construct an isomorphism between the right hand side and the same set
of quadruples of morphisms.∫ 𝑈

𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑈𝑉 C 𝑋

′′
𝑌 ′′

)
× LC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=∫ 𝑈

𝑉
∈LC,𝑃,𝑄∈C
C(𝐴;𝑄 ⊗ 𝑈) × C(𝑄 ⊗ 𝑉 ; 𝑃 ⊗ 𝑋 ′′) × C(𝑃 ⊗ 𝑌 ′′; 𝐵) × LC

(
𝑈
𝑉 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

) def
=∫ 𝑈

𝑉
∈LC,𝑃,𝑄,𝑅∈C
LC

(
𝐴

𝑃⊗𝑋 ′′ ;
𝑈
𝑉

)
× C(𝑃 ⊗ 𝑌 ′′; 𝐵) × C(𝑈;𝑄 ⊗ 𝑋) × C(𝑄 ⊗ 𝑌 ; 𝑅 ⊗ 𝑋 ′) × C(𝑅 ⊗ 𝑌 ′;𝑉)

𝑦2
�∫ 𝑃,𝑄,𝑅∈C

C(𝐴;𝑄 ⊗ 𝑋) × C(𝑄 ⊗ 𝑌 ; 𝑅 ⊗ 𝑋 ′) × C(𝑅 ⊗ 𝑌 ′; 𝑃 ⊗ 𝑋 ′′) × C(𝑃 ⊗ 𝑌 ′′; 𝐵).

Composing both isomorphisms, we obtain the desired associator. It gets defined by the following operations,

(𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2) ≺𝛼1 (𝑔0 # (id𝑃 ⊗ �) # 𝑔1 # (id𝑄 ⊗ �) # 𝑔2) =

𝑓 0 # (id𝑀 ⊗ 𝑔0) # (id𝑀 ⊗𝑃 ⊗ �) # (id𝑀 ⊗ 𝑔1) # (id𝑀 ⊗𝑄 ⊗ �) # (id𝑀 ⊗ 𝑔2) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2.

(𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2) ≺𝛼2 (ℎ0 # (id𝑃 ⊗ �) # ℎ1 # (id𝑄 ⊗ �) # ℎ2) =

𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ ℎ0) # (id𝑁 ⊗𝑃 # �) # (id𝑁 ⊗ ℎ1) # (id𝑁 ⊗𝑄 ⊗ �) # (id𝑁 ⊗ ℎ2) # 𝑓 2.

�

Lemma G.3 (Monoidal lenses parallel associator). We construct a natural isomorphism

(≺𝛼2) :
∫ 𝑈

𝑉
∈MC
LC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
× LC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
�

∫ 𝑈
𝑉
∈MC
LC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

)
× LC

(
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
: (≺𝛼1)

exclusively from Yoneda isomorphisms.

Proof. The left hand side is isomorphic to:∫ 𝑈
𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
× LC

(
𝑈
𝑉 ; 𝑋 ′𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
= (by representability)∫ 𝑈

𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑈𝑉

)
× LC

(
𝑈
𝑉 ; 𝑋

′⊗𝑋 ′′
𝑌 ′⊗𝑌 ′′

)
� (by Yoneda reduction)

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′⊗𝑋 ′′
𝑌 ′⊗𝑌 ′′

)
� (by representability)

LC
(
𝐴
𝐵 ; 𝑋 ⊗𝑋

′⊗𝑋 ′′
𝑌 ⊗𝑌 ′⊗𝑌 ′′

)
,

and the right hand side is isomorphic to the same:∫ 𝑈
𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

)
× LC

(
𝑈
𝑉 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= (by representability)∫ 𝑈

𝑉
∈LC
LC

(
𝐴
𝐵 ; 𝑈𝑉 ⊗ 𝑋

′′
𝑌 ′′

)
× LC

(
𝑈
𝑉 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
� (by Yoneda reduction)

LC
(
𝐴
𝐵 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′ ⊗ 𝑋

′′
𝑌 ′′

)
� (by representability)

LC
(
𝐴
𝐵 ; 𝑋 ⊗𝑋

′⊗𝑋 ′′
𝑌 ⊗𝑌 ′⊗𝑌 ′′

)
.

Composing both isomorphisms, we obtain the desired associator,

(𝑓 0 # (id𝑀 ⊗ � ⊗ �) # 𝑓 1) ≺𝛼1 (𝑔0 # (id𝑃 ⊗ � ⊗ �) # 𝑔1) =

𝑓 0 # (id𝑀 ⊗ 𝑔0 ⊗ id𝑋 ′′) # (id𝑀 ⊗𝑃 ⊗ � ⊗ � ⊗ �) # (id𝑀 ⊗ 𝑔1 ⊗ id𝑌 ′′) # 𝑓 1.

(𝑓 0 # (id𝑀 ⊗ � ⊗ �) # 𝑓 1) ≺𝛼2 (ℎ0 # (id𝑄 ⊗ � ⊗ �) # ℎ1) =

𝑓 0 # 𝜎 # (id𝑀 ⊗ ℎ0 ⊗ id𝑋) # 𝜎 # (id𝑀 ⊗𝑃 ⊗ � ⊗ � ⊗ �) # 𝜎 # (id𝑀 ⊗ ℎ1 ⊗ id𝑌) # 𝜎 # 𝑓 1.

This concludes the proof. �

Lemma G.4 (Monoidal lenses sequential right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑋 ′

𝑌 ′
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
× LC

(
𝑋 ′
𝑌 ′ ; 𝑁

)
� LC

(
𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms.

Proof. We construct the isomorphism with the following coend calculus derivation.∫ 𝑋 ′
𝑌 ′
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
× LC

(
𝑋 ′
𝑌 ′ ; 𝑁

) def
=∫ 𝑋 ′

𝑌 ′
∈LC,𝑃,𝑄∈C
C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ;𝑄 ⊗ 𝑋 ′) × C(𝑄 ⊗ 𝑌 ′; 𝐵) × C(𝑋 ′;𝑌 ′) def

=∫ 𝑋 ′
𝑌 ′
∈LC,𝑃∈C
C(𝐴; 𝑃 ⊗ 𝑋) × LC

(
𝑃⊗𝑌
𝐵 ; 𝑋 ′𝑌 ′

)
× C(𝑋 ′;𝑌 ′)

𝑦2
�∫ 𝑃∈C

C(𝐴; 𝑃 ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ; 𝐵).

We obtain the following right unitor.

(𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ �) # 𝑓 2) ≺𝜌 𝑔 =

𝑓 0 # (id𝑀 ⊗ �) # 𝑓 1 # (id𝑁 ⊗ 𝑔) # 𝑓 2.

The left unitor is defined similarly. �

Lemma G.5 (Monoidal lenses parallel right unitor). We construct a natural isomorphism

(≺𝜌) :
∫ 𝑋 ′

𝑌 ′
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
× LC

(
𝑋 ′
𝑌 ′ ; 𝑁

)
� LC

(
𝐴
𝐵 ; 𝑋𝑌

)
exclusively from Yoneda isomorphisms and symmetry of C.

Proof. We construct the isomorphism with the following coend calculus derivations.∫ 𝑋 ′
𝑌 ′
∈LC
LC

(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
× LC

(
𝑋 ′
𝑌 ′ ; 𝑁

)
= (by definition)∫ 𝑋 ′
𝑌 ′
∈LC,𝑃∈C
C(𝐴; 𝑃 ⊗ 𝑋 ⊗ 𝑋 ′) × C(𝑃 ⊗ 𝑌 ⊗ 𝑌 ′; 𝐵) × C(𝑋 ′;𝑌 ′)

� (by symmetry of C)∫ 𝑋 ′
𝑌 ′
∈LC,𝑃∈C
C(𝐴; 𝑃 ⊗ 𝑋 ′ ⊗ 𝑋) × C(𝑃 ⊗ 𝑌 ′ ⊗ 𝑌 ; 𝐵) × C(𝑋 ′;𝑌 ′)

� (by Yoneda reduction)∫ 𝑋 ′
𝑌 ′
∈LC,𝑃,𝑄,𝑅∈C
C(𝐴;𝑄 ⊗ 𝑋) × C(𝑄; 𝑃 ⊗ 𝑋 ′) × C(𝑃 ⊗ 𝑌 ′; 𝑅) × C(𝑅 ⊗ 𝑌 ; 𝐵) × 𝐶 (𝑋 ′;𝑌 ′)

= (by definition)∫ 𝑋 ′
𝑌 ′
∈LC,𝑃,𝑄,𝑅∈C
C(𝐴;𝑄 ⊗ 𝑋) × LC

(
𝑄
𝑅

; 𝑋 ′𝑌 ′
)
× C(𝑅 ⊗ 𝑌 ; 𝐵) × 𝐶 (𝑋 ′;𝑌 ′)

� (by Yoneda reduction)∫ 𝑄∈C
C(𝐴;𝑄 ⊗ 𝑋) × C(𝑄 ⊗ 𝑌 ; 𝐵).

We obtain the following right unitor.

(𝑓 0 # (id𝑀 ⊗ � ⊗ �) # 𝑓 1) ≺𝜌 𝑔 =

𝑓 0 # (id𝑀 ⊗ � ⊗ �) # (id𝑀 ⊗ (𝜎 # (𝑔 ⊗ id𝑋) # 𝜎)) # 𝑓 1 =

𝑓 0 # (id𝑀 ⊗ (𝜎 # (𝑔 ⊗ id𝑋) # 𝜎)) # (id𝑀 ⊗ � ⊗ �) # 𝑓 1.

The left unitor is defined similarly. �

Lemma G.6 (Monoidal lenses symmetry). We construct the symmetries LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� LC

(
𝐴
𝐵 ; 𝑋 ′𝑌 ′ ⊗ 𝑋𝑌

)
.

Proof. These follow from the symmetries of C and representability of ⊗ for monoidal lenses.

LC
(
𝐴
𝐵 ; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
� LC

(
𝐴
𝐵 ; 𝑋 ⊗𝑋

′
𝑌 ⊗𝑌 ′

)
� LC

(
𝐴
𝐵 ; 𝑋

′⊗𝑋
𝑌 ′⊗𝑌

)
� LC

(
𝐴
𝐵 ; 𝑋 ′𝑌 ′ ⊗ 𝑋𝑌

)
.

This concludes the proof. �

Proposition G.7 (From Proposition 7.6). Let (C, ⊗, 𝐼) be a symmetric monoidal category. There exist
monoidal functors (!) : C→ LC and (?) : C𝑜𝑝 → LC.

Proof. This proof appears with a different language in the work of Riley [Ril18, Proposition 2.0.14]. In
fact, there, the combined identity-on-objects functor (!×?) : C×C𝑜𝑝 → LC is shown to be monoidal. In our
case, we can define ! 𝑓 = (𝑓 #� # id𝐼) and ?𝑔 = (id𝐼 #� #𝑔), and then check that compositions and tensoring

of morphisms are compatible with composition and tensoring of monoidal lenses, this is straightforward.
Moreover, as we comment in the text, we can see that, by definition, !(𝐴 ⊗ 𝐵) =

(
𝐴⊗𝐵
𝐼

)
=

(
𝐴
𝐼

)
⊗

(
𝐵
𝐼

)
= !𝐴⊗!𝐵

and ?(𝐴 ⊗ 𝐵) =
(
𝐼

𝐴⊗𝐵
)
=

(
𝐼
𝐴

)
⊗

(
𝐼
𝐵

)
= ?𝐴 ⊗ ?𝐵. �

Proposition G.8 (From Proposition 7.8). Let (C,×, 1) be a cartesian monoidal category. Its produoidal
category of lenses is given by the following profunctors.

Lens
(
𝐴
𝐵; 𝑋𝑌

)
= C(𝐴; 𝑋) × C(𝐴 × 𝑌 ; 𝐵).

Lens
(
𝐴
𝐵; 𝑋𝑌 C 𝑋

′
𝑌 ′

)
= C(𝐴; 𝑋) × C(𝐴 × 𝑌 ; 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

Lens
(
𝐴
𝐵; 𝑋𝑌 ⊗ 𝑋

′
𝑌 ′

)
= C(𝐴; 𝑋 × 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

Lens
(
𝐴
𝐵

)
= C(𝐴; 𝐵).

Proof. We employ coend calculus. The derivation of the morphisms of cartesian lenses is very well-known
[Ril18], [CEG+20]; we derive the sequential and parallel splits. Indeed, the sequential split reduces as∫ 𝑀,𝑁

C(𝐴; 𝑀 × 𝑋) × C(𝑀 × 𝑌 ; 𝑁 × 𝑋 ′) × C(𝑁 × 𝑌 ′; 𝐵)

� (Universal property of the product)∫ 𝑀,𝑁

C(𝐴; 𝑀) × C(𝐴; 𝑋) × C(𝑀 × 𝑌 ; 𝑁) × C(𝑀 × 𝑌 ; 𝑋 ′) × C(𝑁 × 𝑌 ′; 𝐵)

� (by Yoneda reduction)
C(𝐴; 𝑋) × C(𝐴 × 𝑌 ; 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

And the parallel split reduces as∫ 𝑀

C(𝐴; 𝑀 × 𝑋 × 𝑋 ′) × C(𝑀 × 𝑌 × 𝑌 ′; 𝐵)

� (Universal property of the product)∫ 𝑀

C(𝐴; 𝑀) × C(𝐴; 𝑋 × 𝑋 ′) × C(𝑀 × 𝑌 × 𝑌 ′; 𝐵)

� (by Yoneda reduction)
C(𝐴; 𝑋 × 𝑋 ′) × C(𝐴 × 𝑌 × 𝑌 ′; 𝐵).

The unit is just the same as in the general monoidal case. �

Theorem G.9 (From Theorem 7.3). Monoidal lenses are the free symmetric normalization of the cofree
symmetric produoidal category over a monoidal category.

Proof. We have already proven that the symmetric normalization procedure yields the free symmetric
normalization over a symmetric produoidal category (Theorem 5.7).

The rest of the proof amounts to show that the normal symmetric produoidal category of monoidal
lenses is precisely the symmetric normalization of the produoidal category of spliced arrows. We do so
for morphisms, the rest of the proof is similar.

N 𝜎SC
(
𝐴
𝐵; 𝑋𝑌

) def
=

SC
(
𝐴
𝐵; 𝑁 ⊗ 𝑋𝑌

) def
=∫ 𝑈

𝑉
∈SC
SC

(
𝐴
𝐵;𝑈𝑉 ⊗ 𝑋𝑌

)
× SC

(
𝑈
𝑉 ; 𝑁

) def
=∫ 𝑈,𝑉 ∈C

C(𝐴;𝑈 ⊗ 𝑋) × C(𝑉 ⊗ 𝑌 ; 𝐵) × C (𝑈;𝑉)
𝑦1
�∫ 𝑈 ∈C

C (𝐴;𝑈 ⊗ 𝑋) × C(𝑈 ⊗ 𝑌 ; 𝐵) def
=

LC
(
𝐴
𝐵; 𝑋𝑌

)
The rest of the profunctors follow a similar reasoning. �

Appendix H
Further Work

Theorem H.1 (From Proposition 8.1). Let V be a normal and ⊗-symmetric produoidal category with
coends over V commuting with finite connected limits. Then, [Vop, Set] is a dependence category in the
sense of Shapiro and Spivak [SS22].

Proof. Whenever V is produoidal, [Vop, Set], its category of presheaves is duoidal, with the structure given
by convolution (Theorem I.6).

At the same time, [Vop, Set] is a locally cartesian closed category will all limits because it is a presheaf
category. Whenever finite connected limits are preserved by ⊗, ⊳, we obtain a dependence category [SS22,
Theorem 4.8]. This means we only need the following isomorphism,∫ 𝑈,𝑉

V(𝑋;𝑈 ⊗ 𝑉) × lim𝑖 𝑃𝑖 (𝑈) × lim 𝑗 𝑄 𝑗 (𝑉)

� (Commutation of limits)∫ 𝑈,𝑉

lim𝑖, 𝑗 V(𝑋;𝑈 ⊗ 𝑉) × 𝑃𝑖 (𝑈) ×𝑄 𝑗 (𝑉)

� (Coends commute with finite connected limits)

lim𝑖, 𝑗

∫ 𝑈,𝑉

V(𝑋;𝑈 ⊗ 𝑉) × 𝑃𝑖 (𝑈) ×𝑄 𝑗 (𝑉)

Where we use our hypothesis on the last step. We conjecture this can be extended to an arbitrary V with
minor constraints. �

Appendix I
Duoidal and Produoidal Categories

By the Eckmann-Hilton argument, each time we have two monoids (∗, ◦) such that one is a monoid
homomorphism over the other, (𝑎 ◦ 𝑏) ∗ (𝑐 ◦ 𝑑) = (𝑎 ∗ 𝑐) ◦ (𝑏 ∗ 𝑑), we know that both monoids coincide
into a single commutative monoid.

However, an extra dimension helps us side-step the Eckmann-Hilton argument. If, instead of equalities
or isomorphisms, we use directed morphisms, both monoids (which now may become 2-monoids) do not
necessarily coincide, and the resulting structure is that of a duoidal category.

Definition I.1 (Duoidal category). A duoidal category [AM10] is a category C with two monoidal
structures, (C, ⊗, 𝐼, 𝛼, 𝜆, 𝜌) and (C,C, 𝑁, 𝛽, 𝜅, 𝜈) such that the latter distribute over the former. In other
words, it is endowed with a duoidal tensor, (C) : C × C→ C, together with natural distributors

𝜓2 : (𝑋C𝑍) ⊗ (𝑌 C𝑊) → (𝑋 ⊗𝑌)C (𝑍 ⊗𝑊), 𝜓0 : 𝐼 → 𝐼C 𝐼, 𝜑2 : 𝑁 ⊗𝑁 → 𝑁, and 𝜑0 : 𝐼 → 𝑁,

satisfying the following coherence equations (Figures 32 to 36).

Remark I.2. In other words, the duoidal tensor and unit are lax monoidal functors for the first monoidal
structure, which means that the laxators must satisfy the following equations.

1) (𝜓2 ⊗ 𝑖𝑑) # 𝜓2 # (𝛼 C 𝛼) = 𝛼 # (𝑖𝑑 ⊗ 𝜓2) # 𝜓2, for the associator;
2) (𝜓0 ⊗ 𝑖𝑑) # 𝜓2 # (𝜆 C 𝜆) = 𝜆, for the left unitor; and
3) (𝑖𝑑 ⊗ 𝜓0) # 𝜓2 # (𝜌 C 𝜌) = 𝜌, for the right unitor;
4) 𝛼 # (𝑖𝑑 ⊗ 𝜑2) # 𝜑2 = (𝜑2 ⊗ 𝑖𝑑) # 𝜑2, for the associator;
5) (𝜑0 ⊗ 𝑖𝑑) # 𝜑2 = 𝜆, for the left unitor; and
6) (𝑖𝑑 ⊗ 𝜑0) # 𝜑2 = 𝜌, for the right unitor.

Theorem I.3 (Coherence, [AM10]). Any two parallel morphisms constructed out of the coherence
isomorphisms and laxators of a duoidal category coincide.

((𝐴 C 𝐵) ⊗ (𝐶 C 𝐷)) ⊗ (𝐸 C 𝐹) (𝐴 C 𝐵) ⊗ ((𝐶 C 𝐷) ⊗ (𝐸 C 𝐹))

((𝐴 ⊗ 𝐶) C (𝐵 ⊗ 𝐷)) ⊗ (𝐸 C 𝐹) (𝐴 C 𝐵) ⊗ ((𝐶 ⊗ 𝐸) C (𝐷 ⊗ 𝐹))

((𝐴 ⊗ 𝐶) ⊗ 𝐸) C ((𝐵 ⊗ 𝐷) ⊗ 𝐹) (𝐴 ⊗ (𝐶 ⊗ 𝐸)) C (𝐵 ⊗ (𝐷 ⊗ 𝐹))

𝛼

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝜓2 𝜓2

𝛼C𝛼

((𝐴 C 𝐵) C 𝐶) ⊗ ((𝐷 C 𝐸) C 𝐹) (𝐴 C (𝐵 C 𝐶)) ⊗ (𝐷 C (𝐸 C 𝐹))

((𝐴 C 𝐵) ⊗ (𝐷 C 𝐸)) C (𝐶 ⊗ 𝐹) (𝐴 ⊗ 𝐷) C ((𝐵 C 𝐶) ⊗ (𝐸 C 𝐹))

((𝐴 ⊗ 𝐷) C (𝐵 ⊗ 𝐸)) C (𝐶 ⊗ 𝐹) (𝐴 ⊗ 𝐷) C ((𝐵 ⊗ 𝐸) C (𝐶 ⊗ 𝐹))

𝛽⊗𝛽

𝜓2 𝜓2

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝛽

Fig. 32: Coherence diagrams for associativity of a duoidal category.

𝐼 ⊗ (𝐴 C 𝐵) (𝐼 C 𝐼) ⊗ (𝐴 C 𝐵)

𝐴 C 𝐵 (𝐼 ⊗ 𝐴) C (𝐼 ⊗ 𝐵)

𝜓0⊗𝑖𝑑

𝜆 𝜓2

𝜆C𝜆

(𝐴 C 𝐵) ⊗ 𝐼 (𝐴 C 𝐵) ⊗ (𝐼 C 𝐼)

𝐴 C 𝐵 (𝐴 ⊗ 𝐼) C (𝐵 ⊗ 𝐼)

𝜓0⊗𝑖𝑑

𝜌 𝜓2

𝜌C𝜌

Fig. 33: Coherence diagrams for ⊗-unitality of a duoidal category.

𝑁 C (𝐴 ⊗ 𝐵) (𝑁 ⊗ 𝑁) C (𝐴 ⊗ 𝐵)

𝐴 ⊗ 𝐵 (𝑁 C 𝐴) ⊗ (𝑁 C 𝐵)

𝜅

𝜑2C𝑖𝑑

𝜓2

𝜅⊗𝜅

(𝐴 ⊗ 𝐵) C 𝑁 (𝐴 ⊗ 𝐵) C (𝑁 ⊗ 𝑁)

𝐴 ⊗ 𝐵 (𝐴 C 𝑁) ⊗ (𝐵 C 𝑁)

𝜈

𝑖𝑑C𝜑2

𝜓2

𝜈⊗𝜈

Fig. 34: Coherence diagrams for C-unitality of a duoidal category.

(𝑁 ⊗ 𝑁) ⊗ 𝑁 𝑁 ⊗ (𝑁 ⊗ 𝑁)

𝑁 ⊗ 𝑁 𝑁 𝑁 ⊗ 𝑁

𝛼

𝜑2⊗𝑖𝑑 𝑖𝑑⊗𝜑2

𝜑2 𝜑2

𝐼 C 𝐼 𝐼 𝐼 C 𝐼

(𝐼 C 𝐼) C 𝐼 𝐼 C (𝐼 C 𝐼)

𝜓0⊗𝑖𝑑

𝜓0 𝜓0

𝑖𝑑⊗𝜓0

𝛽

Fig. 35: Associativity and coassociativity for 𝑁 and 𝐼 in a duoidal category.

𝑁 ⊗ 𝐼 𝑁

𝑁 ⊗ 𝑁

𝜌

𝑖𝑑⊗𝜑0 𝜑2

𝐼 ⊗ 𝑁 𝑁

𝑁 ⊗ 𝑁

𝜆

𝜑0⊗𝑖𝑑 𝜑2

𝐼 C 𝑁 𝐼 C 𝐼

𝐼

𝑖𝑑⊗𝜑0

𝜈
𝜓0

𝑁 C 𝐼 𝐼 C 𝐼

𝐼

𝑖𝑑⊗𝜑0

𝜅
𝜓0

Fig. 36: Unitality and counitality for 𝑁 and 𝐼 in a duoidal category.

I.1 Normalization of duoidal categories
Garner and López Franco [GF16] introduce a procedure for normalizing a sufficiently well-behaved

duoidal category, based in the construction of a new duoidal category of bimodules. In this text, we
introduce a normalization procedure for an arbitrary produoidal category. For completeness, let us recall
first the original procedure [GF16].

Let 𝑀 be a bimonoid in the duoidal category (V, ⊗, 𝐼,C, 𝑁), with maps 𝑒 : 𝐼 → 𝑀 and 𝑚 : 𝑀⊗𝑀 → 𝑀;
and with maps 𝑢 : 𝑀 → 𝑁 and 𝑑 : 𝑀 → 𝑀 C 𝑀 . Consider now the category of 𝑀 ⊗-bimodules. This
category has a monoidal structure lifted from (V,C, 𝑁):

1) the unit, 𝑁 , has a bimodule structure with

𝑀 ⊗ 𝑁 ⊗ 𝑀
𝑢⊗id⊗𝑢−→ 𝑁 ⊗ 𝑁 ⊗ 𝑁 −→ 𝑁;

2) the sequencing of two 𝑀 ⊗-bimodules is a 𝑀 ⊗-bimodule with

𝑀 ⊗ (𝐴 C 𝐵) ⊗ 𝑀

→ (𝑀 C 𝑀) ⊗ (𝐴 C 𝐵) ⊗ (𝑀 C 𝑀)
→ (𝑀 ⊗ 𝐴 ⊗ 𝑀) C (𝑀 ⊗ 𝐵 ⊗ 𝑀) → 𝐴 C 𝐵.

Moreover, whenever V admits reflexive coequalizers preserved by (⊗), the category of 𝑀 ⊗-bimodules is
monoidal with the tensor of bimodules: the coequalizer

𝐴 ⊗ 𝑀 ⊗ 𝐵 ⇒ 𝐴 ⊗ 𝐵 � 𝐴 ⊗𝑀 𝐵.

In this case (Bimod⊗
𝑀
, ⊗𝑀 , 𝑀,C, 𝑁) is a duoidal category.

Theorem I.4 (Normalization of a duoidal category). Let (V, ⊗, 𝐼,C, 𝑁) be a duoidal category with reflexive
coequalizers preserved by (⊗). The category of 𝑁-bimodules is then a normal duoidal category,

N(V) = (Bimod⊗
𝑁
, ⊗𝑁 , 𝑁,C, 𝑁).

We call this category the normalization [GF16] of the duoidal category V.

I.2 Produoidal Categories
Definition I.5 (Produoidal category, from Definition 4.2). A produoidal category is a category V endowed
with two promonoidal structures,

V(•; • ⊗ •) : V × V� V, and V(•; 𝐼) : 1� V,

V(•; • C •) : V × V� V, and V(•; 𝑁) : 1� V,

such that one laxly distributes over the other. This is to say that it is endowed with the following natural
laxators,

𝜓2 : V(•; (𝑋 C 𝑌) ⊗ (𝑍 C𝑊)) → V(•; (𝑋 ⊗ 𝑍) C (𝑌 ⊗𝑊)),
𝜓0 : V(•; 𝐼) → V(•; 𝐼 C 𝐼),

𝜑2 : V(•; 𝑁 ⊗ 𝑁) → V(•; 𝑁),
𝜑0 : V(•; 𝐼) → V(•; 𝑁).

Laxators, together with unitors and associators must satisfy the coherence conditions in the following
diagrams (Figures 37 to 41).

V(•, ((𝐴 C 𝐵) ⊗ (𝐶 C 𝐷)) ⊗ (𝐸 C 𝐹)) V(•, (𝐴 C 𝐵) ⊗ ((𝐶 C 𝐷) ⊗ (𝐸 C 𝐹)))

V(•, ((𝐴 ⊗ 𝐶) C (𝐵 ⊗ 𝐷)) ⊗ (𝐸 C 𝐹)) V(•, (𝐴 C 𝐵) ⊗ ((𝐶 ⊗ 𝐸) C (𝐷 ⊗ 𝐹)))

V(•, ((𝐴 ⊗ 𝐶) ⊗ 𝐸) C ((𝐵 ⊗ 𝐷) ⊗ 𝐹)) V(•, (𝐴 ⊗ (𝐶 ⊗ 𝐸)) C (𝐵 ⊗ (𝐷 ⊗ 𝐹)))

𝛼

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝜓2 𝜓2

𝛼C𝛼

V(•, ((𝐴 C 𝐵) C 𝐶) ⊗ ((𝐷 C 𝐸) C 𝐹)) V(•, (𝐴 C (𝐵 C 𝐶)) ⊗ (𝐷 C (𝐸 C 𝐹)))

V(•, ((𝐴 C 𝐵) ⊗ (𝐷 C 𝐸)) C (𝐶 ⊗ 𝐹)) V(•, (𝐴 ⊗ 𝐷) C ((𝐵 C 𝐶) ⊗ (𝐸 C 𝐹)))

V(•, ((𝐴 ⊗ 𝐷) C (𝐵 ⊗ 𝐸)) C (𝐶 ⊗ 𝐹)) V(•, (𝐴 ⊗ 𝐷) C ((𝐵 ⊗ 𝐸) C (𝐶 ⊗ 𝐹)))

𝛽⊗𝛽

𝜓2 𝜓2

𝜓2⊗𝑖𝑑 𝑖𝑑⊗𝜓2

𝛽

Fig. 37: Coherence diagrams for associativity of a produoidal category.

V(•, 𝐼 ⊗ (𝐴 C 𝐵)) V(•, (𝐼 C 𝐼) ⊗ (𝐴 C 𝐵))

V(•, 𝐴 C 𝐵) V(•, (𝐼 ⊗ 𝐴) C (𝐼 ⊗ 𝐵))

𝜓0⊗𝑖𝑑

𝜆 𝜓2

𝜆C𝜆

V(•, (𝐴 C 𝐵) ⊗ 𝐼) V(•, (𝐴 C 𝐵) ⊗ (𝐼 C 𝐼))

V(•, 𝐴 C 𝐵) V(•, (𝐴 ⊗ 𝐼) C (𝐵 ⊗ 𝐼))

𝜓0⊗𝑖𝑑

𝜌 𝜓2

𝜌C𝜌

Fig. 38: Coherence diagrams for ⊗-unitality of a produoidal category.

V(•, 𝑁 C (𝐴 ⊗ 𝐵)) V(•, (𝑁 ⊗ 𝑁) C (𝐴 ⊗ 𝐵))

V(•, 𝐴 ⊗ 𝐵) V(•, (𝑁 C 𝐴) ⊗ (𝑁 C 𝐵))

𝜅

𝜑2C𝑖𝑑

𝜓2

𝜅⊗𝜅

V(•, (𝐴 ⊗ 𝐵) C 𝑁) V(•, (𝐴 ⊗ 𝐵) C (𝑁 ⊗ 𝑁))

V(•, 𝐴 ⊗ 𝐵) V(•, (𝐴 C 𝑁) ⊗ (𝐵 C 𝑁))

𝜈

𝑖𝑑C𝜑2

𝜓2

𝜈⊗𝜈

Fig. 39: Coherence diagrams for C-unitality of a produoidal category.

V(•, (𝑁 ⊗ 𝑁) ⊗ 𝑁) V(•, 𝑁 ⊗ (𝑁 ⊗ 𝑁))

V(•, 𝑁 ⊗ 𝑁) V(•, 𝑁) V(•, 𝑁 ⊗ 𝑁)

𝛼

𝜑2⊗𝑖𝑑 𝑖𝑑⊗𝜑2

𝜑2 𝜑2

V(•, 𝐼 C 𝐼) V(•, 𝐼) V(•, 𝐼 C 𝐼)

V(•, (𝐼 C 𝐼) C 𝐼) V(•, 𝐼 C (𝐼 C 𝐼))

𝜓0⊗𝑖𝑑

𝜓0 𝜓0

𝑖𝑑⊗𝜓0

𝛽

Fig. 40: Associativity and coassociativity for 𝑁 and 𝐼 in a produoidal category.

V(•, 𝑁 ⊗ 𝐼) V(•, 𝑁)

V(•, 𝑁 ⊗ 𝑁)

𝜌

𝑖𝑑⊗𝜑0 𝜑2

V(•, 𝐼 ⊗ 𝑁) V(•, 𝑁)

V(•, 𝑁 ⊗ 𝑁)

𝜆

𝜑0⊗𝑖𝑑 𝜑2

V(•, 𝐼 C 𝑁) V(•, 𝐼 C 𝐼)

V(•, 𝐼)

𝑖𝑑⊗𝜑0

𝜈
𝜓0

V(•, 𝑁 C 𝐼) V(•, 𝐼 C 𝐼)

V(•, 𝐼)

𝑖𝑑⊗𝜑0

𝜅
𝜓0

Fig. 41: Unitality and counitality for 𝑁 and 𝐼 in a produoidal category.

I.3 Produoidals induce duoidals
Theorem I.6. Let V be a produoidal category, then its category of presheaves, [Vop, Set], is duoidal with
the structure given by convolution [BS13].

Proof. Let 𝑃 and 𝑄 be presheaves in V. We define the following tensor products on presheaves by
convolution of the tensor products in V.

(𝑃 ⊗ 𝑄) (𝐴) =
∫ 𝑈,𝑉

hom(𝐴,𝑈 ⊗ 𝑉) × 𝑃(𝑈) ×𝑄(𝑉),

(𝑃 C𝑄) (𝐴) =
∫ 𝑈,𝑉

hom(𝐴,𝑈 C𝑉) × 𝑃(𝑈) ×𝑄(𝑉).

These tensor products can be shown in a straightforward way to form a duoidal category, inheriting the
laxators from those of V. �

Appendix J
Tambara modules

Definition J.1 (Tambara module, [PS07]). Let (A, ⊗, 𝐼) be a strict monoidal category. A Tambara module
is a profunctor 𝑇 : Aop × A→ Set endowed with natural transformations

𝑡𝑀𝑙 : 𝑇 (𝑋;𝑌) → 𝑇 (𝑀 ⊗ 𝑋, 𝑀 ⊗ 𝑌),

𝑡𝑀𝑟 : 𝑇 (𝑋;𝑌) → 𝑇 (𝑋 ⊗ 𝑀,𝑌 ⊗ 𝑀),
that are natural in both 𝑋 and 𝑌 , but also dinatural on 𝑀 . These must moreover satisfy the following
axioms:
• 𝑡 𝐼

𝑙
= 𝑖𝑑 and 𝑡 𝐼𝑟 = 𝑖𝑑, unitality;

• 𝑡𝑀
𝑙

𝑡𝑁
𝑙

= 𝑡𝑁 ⊗𝑀
𝑙

and 𝑡𝑀𝑟 # 𝑡𝑁𝑟 = 𝑡𝑀 ⊗𝑁
𝑙

, multiplicativity;
• 𝑡𝑀

𝑙
𝑡𝑁𝑟 = 𝑡𝑁𝑟 # 𝑡𝑀

𝑙
, and compatibility.

Tambara modules are the algebras of a monad. We start by noting that the hom profunctor is a monoid
with respect to Day convolution. This makes the following functor a monad on endoprofunctors, the so-
called Pastro-Street monad [PS07],

Φ(𝑃) = ℎ𝑜𝑚 ~ 𝑃 ~ ℎ𝑜𝑚;

where Φ : [Cop × C, Set] → [Cop × C, Set].

Theorem J.2. The algebras of the Pastro-Street monad, the Φ-algebras, are precisely Tambara modules
[PS07]. As a consequence, the free Tambara module over a profunctor 𝐻 : Cop × C→ Set is Φ(𝐻).

Example J.3. Consider the profunctor よ(𝐴; 𝐵) : Aop × A → Set that produes a hole of types 𝐴 and 𝐵.
That is, let よ(𝐴; 𝐵) = hom(•, 𝐴) × hom(𝐵, •). The free Tambara module over it is the monoidal context
with a hole of type 𝐴 and 𝐵,

Φ(よ𝐴
𝐵) =

∫ 𝑀,𝑁

hom(•, 𝑀 ⊗ 𝐴 ⊗ 𝑁) × hom(𝑀 ⊗ 𝐵 ⊗ 𝑁, •).

J.1 Normalization of profunctors
Let (C, ⊗, 𝐼) be a monoidal category. The category of endoprofunctors Cop × C → Set is then duoidal

with composition (C) and Day convolution (~).
(Cop × C, Set, ~, 𝐼,C, hom).

Moreover, we can also construct its normalization: the category of endoprofunctors, [Cop × C, Set], has
reflexive coequalisers; thus, we are in the conditions of Theorem I.4. The normal duoidal category of
hom~-bimodules has been traditionally called the category of Tambara modules.

N(Cop × C, Set, ~, 𝐼,C, hom) = (Tamb, ~hom, hom,C, hom).
Theorem J.4. The category of Tambara modules is a normal duoidal category and, in fact, it is the
normalization of the duoidal category of endoprofunctors.

Appendix K
Monoidal Categories

K.1 Monoidal categories.
Endowed with the notion of isomorphism, we can now relax our definition of theory of processes by

substituting strict equalities by isomorphism.

Definition K.1. A {symmetric} monoidal category [Mac78] (C, ⊗, 𝐼) is a tuple

(Cobj,Cmor, (#), id, (⊗)obj, (⊗)mor, 𝐼, 𝛼, 𝜆, 𝜌, {𝜎}),

specifying a set of objects, or resource types, Cobj; a set of morphisms, or processes, Cmor; a composition
operation; a family of identity morphisms; a tensor operation on objects and morphisms; a unit object and
families of associator, left unitor, right unitor {and swapping morphisms}.

The families of associator, left unitor and right unitor morphisms have the following types.

𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶),
𝜆𝐴 : 𝐼 ⊗ 𝐴→ 𝐴,

𝜌𝐴 : 𝐴 ⊗ 𝐼 → 𝐴.

They must satisfy the following non-strict versions of the axioms.

𝐴 ⊗ (𝐵 ⊗ 𝐶) � (𝐴 ⊗ 𝐵) ⊗ 𝐶, (1)
𝐴 ⊗ 𝐼 � 𝐴 � 𝐼 ⊗ 𝐴, (2)

(𝑓 # 𝑔) # ℎ = 𝑓 # (𝑔 # ℎ), (3)
id𝐵 # 𝑓 = 𝑓 = 𝑓 # id𝐵, (4)

(𝑓 ⊗ (𝑔 ⊗ ℎ)) # 𝛼 = 𝛼 # ((𝑓 ⊗ 𝑔) ⊗ ℎ), (5)
(𝑓 ⊗ id𝐼) # 𝜌 = 𝜌 # 𝑓 , (6)

(𝑓 ⊗ 𝑔) # (ℎ ⊗ 𝑘) = (𝑓 # ℎ) ⊗ (𝑔 # 𝑘), (7)
𝜎𝐴,𝐵⊗𝐶 # 𝛼 = 𝛼 # (𝜎𝐴,𝐵 # id𝐶) # (id𝐵 ⊗ 𝜎𝐴,𝐶), (8)
𝜎𝐴,𝐵⊗𝐶 # 𝛼 = 𝛼 # (𝜎𝐴,𝐵 # id𝐶) # (id𝐵 ⊗ 𝜎𝐴,𝐶), (9)

𝜎𝐴,𝐴′ # (𝑔 ⊗ 𝑓) = (𝑓 ⊗ 𝑔) # 𝜎𝐵,𝐵′ , (10)
𝜎𝐴,𝐵 # 𝜎𝐵,𝐴 = id𝐴⊗𝐵 . (11)

{Additionally}, they must satisfy the following axioms, whenever they are formally well-typed.

𝛼 # 𝛼 = (𝛼 ⊗ id) # 𝛼 # (id ⊗ 𝛼), (12)
𝜌 = 𝛼 # (id ⊗ 𝜆), (13)

𝛼 # 𝜎 # 𝛼 = (𝜎 ⊗ id) # 𝛼 # (id ⊗ 𝜎). (14)

String diagrams [JS91] are a sound and complete syntax for monoidal categories.

Construction K.2. Let C be a monoidal category. Its strictification, Strict(C), is a monoidal category
where
• objects are cliques: for each list of objects of C, say, [𝐴0, . . . , 𝐴𝑛] ∈ List(C), we form the clique

containing all possible parenthesizations and coherence isomorphisms between them;
• morphisms are clique morphisms: a morphism between any two components of the clique, which

determines a morphism between all of them.
The tensor product is concatenation, which makes it a strict monoidal category.

Remark K.3. There is a strong monoidal functor C → Strict(C), this makes an object 𝐴 into an object
[𝐴]; this is fully-faithful but, moreover, it is essentially surjective, giving a monoidal equivalence.

Theorem K.4. Every monoidal category is monoidally equivalent to its strictification.

	1 Introduction
	1.1 Protocol Description
	1.2 Types for Message Passing
	1.3 Reasoning with Contexts
	1.4 The Produoidal Algebra of Monoidal Context
	1.5 Related Work
	1.6 Contributions

	2 Profunctors and Virtual Structures
	2.1 Dinaturality
	2.2 Promonoidal Categories

	3 Sequential context
	3.1 Contour of a Promonoidal Category
	3.2 The Promonoidal Category of Spliced Arrows

	4 Parallel-Sequential Context
	4.1 Produoidal Categories
	4.2 Monoidal Contour of a Produoidal Category
	4.3 Produoidal Category of Spliced Monoidal Arrows
	4.4 Representable Parallel Structure

	5 Interlude: Normalization
	5.1 Symmetric Normalization

	6 Monoidal Context: Mixing and by normalization
	6.1 The Category of Monoidal Contexts
	6.2 The Normal Produoidal Algebra of Monoidal Contexts

	7 Monoidal Lenses
	7.1 The Category of Monoidal Lenses
	7.2 Protocol Analysis
	7.3 Cartesian Lenses

	8 Conclusions
	8.1 Further Work

	9 Acknowledgements
	References
	Appendix A: Introduction
	A.1 Three Way handshake Implementation

	Appendix B: Profunctors and virtual structures
	B.1 Promonads
	B.2 Multicategories

	Appendix C: Sequential Context
	C.1 Spliced arrow multicategory

	Appendix D: Parallel-Sequential Context
	D.1 Monoidal Contour
	D.2 Spliced Monoidal Arrows

	Appendix E: Normalization
	E.1 Normalization
	E.2 Symmetric Normalization
	E.3 Normalization of duoidals and normalization of produoidals

	Appendix F: Monoidal Context
	Appendix G: Monoidal Lenses
	Appendix H: Further Work
	Appendix I: Duoidal and Produoidal Categories
	I.1 Normalization of duoidal categories
	I.2 Produoidal Categories
	I.3 Produoidals induce duoidals

	Appendix J: Tambara modules
	J.1 Normalization of profunctors

	Appendix K: Monoidal Categories
	K.1 Monoidal categories.

