
Context-Free Languages of String Diagrams

Matt Earnshaw1 and Mario Román1,2

1 Department of Software Science, Tallinn University of Technology
2 Department of Computer Science, University of Oxford

Abstract. We introduce context-free languages of morphisms in monoi-
dal categories, extending recent work on the categorification of context-
free languages, and regular languages of string diagrams. Context-free
languages of string diagrams include classical context-free languages of
words, trees, and hypergraphs, when instantiated over appropriate mo-
noidal categories. We prove a representation theorem for context-free
languages of string diagrams: every such language arises as the image
under a monoidal functor of a regular language of string diagrams.

1 Introduction

Monoids are the classical algebraic home of formal languages, and a long line
of research beginning in the 60s has sought to extend the tools and concepts of
language theory to other algebraic structures, such as trees [23,44], traces [14],
hypergraphs [12,25,45], models of algebraic theories [19,49], algebras for monads
[3,4], and categories [2,50].

Categories are “monoids with many objects”, and passing from the theory
of context-free languages in monoids to the theory of context-free languages in
categories has been the subject of recent work by Melliès and Zeilberger [34,35].
This novel structural point of view suggests a natural generalization to categories
with additional structure. Here, we pursue this idea for monoidal categories. On
the one hand, strict monoidal categories are two-dimensional monoids, and so a
natural step from their one-dimensional counterpart. On the other hand, they
have a natural graphical syntax, string diagrams, providing a fresh approach to
languages of graphs.

A vast literature has explored language theory in various algebras of graphs,
culminating in the celebrated results of Courcelle [12]. Our point of departure
is the claim that many graphical notions can be naturally viewed as morphisms
in monoidal categories; that is, monoidal categories provide a suitable algebraic
framework for graphical formal languages. This manuscript pursues this idea in
the context of recent work in the foundations of language theory which takes
a structural approach to context-freeness. Ultimately, this line of work seeks to
unify the various generalizations of context-free languages, and identify reusable
tools for reasoning about them.

1.1 Languages of string diagrams

Monoidal categories have an intuitive, sound and complete graphical syntax:
string diagrams. String diagrams resemble graphical languages commonly found
in engineering and science, and indeed, they allow us to reason about Markov
kernels [22], linear algebra [6], or quantum processes [1]. In computer science,
they provide foundations for visual programming [28,30].

The use of string diagrams as a syntax in these various domains suggests
the need for a corresponding theory of string diagrams as a formal language.
This is one aim of recent work on languages of string diagrams or monoidal
languages, such as that elaborated by Sobociński and the first author [16,17],
who introduced the class of regular monoidal languages. A monoidal language in
this sense is simply a subset of morphisms in a strict monoidal category, just as
a classical formal language is a subset of a monoid. In this work, we introduce a
natural class of context-free monoidal languages, which capture various extended
notions of context-free language found in the computer science literature.

1.2 Context-free languages over categories

Our main point of reference in this paper is the recent work of Melliès and
Zeilberger [34,35]. This work is a thoroughgoing refashioning of the theory of
context-free languages from a “fibrational” point of view. Melliès and Zeilberger
demonstrate that it is natural and fruitful to consider context-free languages over
arbitrary categories. They introduce an adjunction between splicing (introducing
gaps or contexts in terms) and contouring (linearizing derivation trees), and use
it to give a novel conceptual proof of the Chomsky-Schützenberger representation
theorem: every context-free language is the image of the intersection of a regular
language and the language of balanced parentheses [9].

Melliès and Zeilberger provide an ample supply of examples of context-free
languages in categories, such as context-free languages of runs over an auto-
maton, languages with an explicit end-of-input marker, multiple context-free
grammars [46] and a grammar of series-parallel graphs. However, it is less clear
how notions such as context-free grammars of trees and hypergraphs fit into this
framework. In this paper, we show how this can be accomplished by adapting the
machinery of Melliès and Zeilberger to the wider setting of monoidal categories
and their string diagrams. This generalization is non-trivial, and sheds light
on the intriguing differences between languages of string diagrams and classical
languages. In particular, our two-dimensional version of the Chomsky-Schützen-
berger representation theorem says that every context-free language of string
diagrams is the image under a monoidal functor of a regular language of string
diagrams: no intersection of context-free and regular languages is necessary.

Related work Bruggink and König have investigated recognizable languages of
morphisms in a category using a notion of automaton functor [8], which is similar
to our notion of non-deterministic monoidal automaton. Similar ideas have also
been investigated by Colcombet and Petrisan [11]. Griffing has also introduced

a notion of recognizable set of morphisms in a category [24]. These works deal
with languages over categories, rather than monoidal categories.

The representation of context-free grammars as certain morphisms of multi-
graphs was introduced by Walters in a short paper [51]. A similar type-theoretical
version of this idea was also introduced by De Groote [13]. As discussed more
extensively above, this idea was taken up and substantially refined by Melliès
and Zeilberger, first in a conference paper [34] and later in an extended version
[35].

A different notion of context-free families of string diagrams has been intro-
duced by Zamdzhiev [52]. There, string diagrams are defined combinatorially as
string graphs, and context-free families are then generated by B-edNCE graph
grammars [45]. Though similar, the resulting notion is not directly compara-
ble to ours. Here, we use the native algebra of monoidal categories and their
multicategories of contexts to define and investigate languages.

Finally, Heindel’s abstract [26] claims a proof of a Chomsky-Schützenberger
theorem for morphisms in symmetric monoidal categories, but the work de-
scribed in this abstract was never published. Our development is quite different
from that outlined in Heindel’s abstract. We prove a stronger representation
theorem that does not require an intersection of languages; we work without the
assumption of symmetry; and we generalize the categorical machinery of Melliès
and Zeilberger.

Contributions We introduce context-free languages of string diagrams (Defini-
tion 4.7) and show that they include a wide variety of examples in the computer
science literature including context-free languages of trees and hypergraphs. We
introduce the category of raw optics (Definition 5.1) over a monoidal category,
and its left adjoint, the optical contour (Definition 5.2, Theorem 5.1). We use this
machinery to prove a representation theorem for context-free monoidal languages
(Theorem 6.1), relating them to previous work on regular monoidal languages.

2 Preliminaries

In this paper, we define context-free grammars as particular morphisms of multi-
graphs. This point of view, while perhaps unfamiliar, is simple and powerful. It
suggests natural generalizations of context-free grammars, such as we will pursue
in the main body of the paper, and new conceptual tools for reasoning about
them. This idea is not original to us; its roots go back to Walters [51], with
recent refinement and extension by Melliès and Zeilberger [34,35].

2.1 Context-free languages in free monoids and other categories

We introduce the definition of context-free grammars as morphisms of certain
multigraphs. Multigraphs (or species in the work of Melliès and Zeilberger [35])
are a kind of graph in which edges have a list of sources and single target. It is
often helpful to think of a multigraph as a signature, specifying a set of typed

operations. Note that this is a different use of the term multigraph from that
specifying graphs allowing multiple parallel edges.

Definition 2.1. A multigraph M is a set S of sorts, and sets M(X1, ..., Xn;Y)
of generating operations (or multimorphisms), for each pair of a list of sorts
X1, ..., Xn and a sort Y . A multigraph is finite if sorts and operations are finite
sets. A morphism of multigraphs is given by a function f on sorts and functions
M(X1, ..., Xn;Y) →M(fX1, ..., fXn; fY) between sets of operations.

Multigraphs freely generate multicategories, also known as operads (though
this term sometimes refers only to the single-sorted, symmetric case). See Le-
inster [33] for a comprehensive reference on multicategories. The free multicat-
egory F▽M over a multigraph M has as multimorphisms F▽M(X1, ..., Xn;Y)
the “trees” rooted at Y , with open leaves X1, ..., Xn, that one can build by
“plugging together” operations in M . We call closed trees, i.e. nullary multimor-
phisms d ∈ F▽M(;Y), derivations. Every multicategory M has an underlying
multigraph, denoted |M|, given by forgetting identities and composition.

Every rule in a context-free grammar is of the form R → w1R1...Rn−1wn,
where R,Ri are non-terminals, and wi are (possibly empty) words over an al-
phabet Σ. The insight of Melliès and Zeilberger [35] is that this data may be
arranged as an operation R1, ..., Rn → R in a multigraph over an n-ary opera-
tion w1 − ...−wn called a spliced word : a word with n gaps, as in Figure 1. We
introduce the multicategory of spliced arrows in a category.

Definition 2.2 (Melliès and Zeilberger [35]). The multicategory of spliced
arrows, W C, over a category C, contains, as objects, pairs of objects of C, de-
noted as A

B. Its multimorphisms are morphisms of the original category, but with
n “gaps” or “holes”, into which other morphisms (with holes) may be spliced.
More precisely, the multimorphisms of W C are given by:

W C(A1
B1
, . . . ,An

Bn
;XY) := C(X;A1)×

n−1∏
i=1

C(Bi;Ai+1)× C(Bn;Y).

By convention, nullary multimorphisms are morphisms of C, that is W C(;XY) :=
C(X;Y). The identity is given by a pair of identities of the original category,
multicategorical composition is derived from the composition of the original cat-
egory.

↦

R

R1

R wnR1 Rn-1w1 w2
���

wnw1 w2
������

Rn-1

Fig. 1: (Left) Generic form of a context-free rule. (Right) Context-free rules as a
morphism of multigraphs into spliced arrows; here, spliced arrows in a monoid.

We can now present a context-free grammar in terms of a morphism of
multigraphs from a multigraph of non-terminals to the underlying multigraph
of spliced arrows, as in Figure 1.

Definition 2.3 (Melliès and Zeilberger [35]). A context-free grammar of
morphisms in a category C is a morphism of multigraphs G→ |W C| and a sort
S in G (the start symbol).

By the free-forgetful adjunction between multicategories and multigraphs,
morphisms ϕ : G → |W C| and morphisms of multicategories (or multifunctors)
ϕ̂ : F▽G→ W C are in bijection. This allows for a slick definition of the language
of a grammar.

Definition 2.4 (Melliès and Zeilberger [35]). Let G = (ϕ : G → |W C|, S)
be a context-free grammar of morphisms in C. The language of G is given by the
image of the set of derivations F▽G(;S) under the multifunctor ϕ̂.

When C is a finitely generated free monoid considered as a one-object cat-
egory, then context-free grammars over C correspond precisely to the classical
context-free grammars.

An important realization of Melliès and Zeilberger is that the operation of
forming the multicategory of spliced arrows in C has a left adjoint. That is, every
multicategory gives rise to a category called the contour of M, and this contouring
operation is left adjoint to splicing. We refer to their paper for more details [35,
Section 3.2]. Contours give a conceptual replacement for Dyck languages in the
classical theory of context-free languages: they linearize derivation trees.

In Section 5, we define a new contour of multicategories which we call the
optical contour ; we shall use it to prove a representation theorem for languages of
string diagrams (Theorem 6.1), inspired by generalized Chomsky-Schützenberger
representation theorem proved by Melliès and Zeilberger.

2.2 Monoidal categories, their string diagrams and languages

In this paper, we will mostly be concerned with monoidal categories presented
by generators and equations between the string diagrams built from these gen-
erators. Generators are given by polygraphs.

Definition 2.5. A polygraph Γ is a set SΓ of sorts, and sets Γ (X1 ⊗ ... ⊗
Xn;Y1⊗ ...⊗Ym) of generators for every pair of lists Xi, Yj of sorts. A polygraph
is finite if sorts and generators are finite sets. A morphism of polygraphs is a
function f on sorts and functions Γ (X1 ⊗ ... ⊗Xn;Y1 ⊗ ... ⊗ Ym) → Γ (fX1 ⊗
...⊗ fXn; fY1 ⊗ ...⊗ fYm) between generators.

For a generator γ of arity X1 ⊗ ... ⊗Xn and coarity Y1 ⊗ ... ⊗ Ym we write
γ : X1 ⊗ ... ⊗ Xn → Y1 ⊗ ... ⊗ Ym. When S is single-sorted, we use natural
numbers for the arities and coarities; this case will cover most of the examples
in the following. We depict generators as boxes with strings on the left and right
for their arities and coarities (Figure 2).

 ∈ SΓ α ∈ Γ

...... α

...... d1
... ...d3

... d1
...d3

... d2

......... d1

...... d1

... d2

...

Fig. 2: The free strict monoidal category over a polygraph Γ has set of objects
S∗
Γ and morphisms string diagrams given inductively over the generators of Γ

as above quotiented by the equivalence relation generated by planar isotopy of
diagrams, keeping left and right boundaries fixed. The leftmost rule denotes the
empty diagram. We use colours to indicate sorts.

Proposition 2.1. String diagrams with generators in a polygraph construct a
monoidal category (Figure 2). The monoidal category of string diagrams over a
polygraph is the free strict monoidal category over the polygraph [29,47]. Every
monoidal category is equivalent to a strict one. In particular, string diagrams
are sound and complete for monoidal categories.

We shall need to impose equations between string diagrams, such as in defin-
ing symmetric monoidal categories, cartesian monoidal categories and hyper-
graph categories. To this end, we introduce the following notion of presentation.

Definition 2.6. A finite presentation of a strict monoidal category consists of
a finite polygraph of generators, P, and a finite polygraph of equations, E, with
projections for the two sides of each equation, l, r : E → |F⊗P|. The strict mo-
noidal category presented by (P, E , l, r), is defined as the free strict monoidal
category generated by P and quotiented by the equations in E; in other words,
the equalizer of the two projections l∗, r∗ : F⊗E → F⊗P.

For the soundness and completeness of string diagrams, see Joyal and Street
[29]. For a survey of string diagrams for monoidal categories, see Selinger [47].

Definition 2.7. A monoidal language or language of string diagrams is a subset
of morphisms in a strict monoidal category.

3 Regular Monoidal Languages

Before introducing context-free monoidal languages, we introduce the regular
case, which shall play an important role in Section 6. Regular monoidal languages
were introduced by Sobociński and the first author [16,17], following earlier work
of Bossut and Heindel [7,27]. They are defined by a simple automaton model,
reminiscent of tree automata. In a regular monoidal language, the alphabet is
given by a finite polygraph.

Definition 3.1. A non-deterministic monoidal automaton comprises: a finite
polygraph Γ (the alphabet); a finite set of states Q; for each generator γ : n→ m
in Γ , a transition function ∆γ : Qn → P(Qm); and initial and final state vectors
i, f ∈ Q∗.

Example 3.1. Classical non-deterministic finite state automata arise as monoidal
automata over single-sorted polygraphs in which every generator has arity and
coarity 1. Bottom-up regular tree automata [23] arise precisely from monoidal
automata over single-sorted polygraphs in which every generator has coarity 1
and arbitrary arity, with initial state the empty word and final state a singleton.

A finite state automaton over an alphabet Σ accepts elements of the free
monoid Σ∗. A monoidal automaton over a polygraph Γ accepts morphisms in
the free monoidal category F⊗Γ over Γ . Let us see some examples before giving
the formal definition of the accepted language. We depict the transitions of a
monoidal automaton as elements of a polygraph with strings labelled by states,
and generators labelled by the corresponding element of Γ .

Example 3.2. Consider the following polygraph containing generators (left, be-
low) for an opening and closing parenthesis, and the monoidal automaton over
this polygraph with Q = {S,M}, i = f = S, and transitions shown below,
centre. An accepting run over this automaton is shown below, right. The string
diagram accepted by this run is what we obtain by erasing the states from this
picture.

S
S
M

S
S

(S
S
M

((
(

(
(((S

M

M

S
S

It is clear that the language accepted by this automaton is exactly the “bal-
anced parentheses”, but note that this is not a language of words, since we use
an extra string to keep track of opening and closing parentheses. This principle
will play an important role in our representation theorem in Section 6. Roughly
speaking, this extra wire arises from the optical contour of a string language of
balanced parentheses.

Example 3.3. In the field of DNA computing, Rothemund, Papadakis and Win-
free demonstrated self-assembly of Sierpiński triangles from DNA tiles [43]. Sobo-
ciński and the first author [16] showed how to recast the tile model as a regular
monoidal language over a polygraph containing two tile generators (white and
grey), along with start and end generators, as in Figure 3. Note that the start
(end) generators have arity (coarity) 0, and hence effect a transition from (to)
the empty word of states.

Transitions of a non-deterministic monoidal automaton over Γ extend induc-
tively to string diagrams in F⊗Γ , giving functions δ̂n,m : Qn × F⊗Γ (n,m) →
P(Qm) (Definition F.1).

Definition 3.2. A string diagram s : n → m in the free monoidal category
F⊗Γ over a polygraph Γ is in the language of a non-deterministic monoidal
automaton ({∆γ}γ∈Γ , i, f) if and only if the run over s reaches the final state,
f ∈ δ̂n,m(i, s).

H1

H1
V1

V0
H0

H0
V0

V0
H0

H0
V1

V1
H1

H1
V0

V1
H1

V1

H1

V1

Fig. 3: Transitions for the Sierpiński monoidal automaton (left) and an element
of the language (right). The initial and final states are the empty word.

Definition 3.3. A monoidal language L is a regular monoidal language if and
only if there exists a non-deterministic monoidal automaton accepting L.

The data of a monoidal automaton is equivalent to a morphism of finite
polygraphs, which we call a regular monoidal grammar, following Walters’ [51]
use of the term grammar when data is presented as fibered over an alphabet,
and automata when the alphabet indexes transitions as in Definition 3.1. We
shall use this convenient presentation in the following.

Definition 3.4. A regular monoidal grammar is a morphism of finite polygraphs
ψ : Q → Γ , equipped with finite initial and final sorts i, f ∈ S∗

Q. The morphisms
in F⊗Q(i, f) are derivations in the grammar, and their image under the free
monoidal functor F⊗ψ is the language of the grammar; a subset of morphisms
in F⊗Γ .

Proposition 3.1. For every non-deterministic monoidal automaton there is a
regular monoidal grammar with the same language, and vice-versa.

Proof (Sketch). See Appendix, Proposition 3.1.

Not every monoidal language is a regular monoidal language. The following
is an example.

Proposition 3.2. Let Γ be the polygraph containing two generators: one for
“over-braiding” and one for “under-braiding” . The language of unbraids
on two strings over Γ , i.e. diagrams equivalent under planar isotopy to untangled
strings, is not a regular monoidal language.

Proof (Proof sketch). We can use the pumping lemma for regular monoidal
languages (Appendix, Lemma B.1), with k = 2. The argument is analogous
to that for classical languages of balanced parentheses: every over-braiding or
under-braiding must be eventually balanced with its opposite.

In the next section, we introduce context-free monoidal languages and we
shall see that unbraids fall in this class. In Section 6, we prove a surprising
representation theorem: every context-free monoidal language is the image under
a monoidal functor of a regular monoidal language.

Remark 3.1. As defined, regular monoidal languages are subsets of free strict
monoidal categories: we shall need only this case in order to prove our main
theorem. Context-free monoidal languages will be defined over arbitrary strict
monoidal categories, so this raises the question of extending the regular case
to monoidal categories that are not free. We suggest this can be done by a
generalization of Melliès and Zeilberger’s definition of finite-state automata over
a category as finitary unique lifting of factorizations functors [35, Section 2].

4 Context-Free Monoidal Languages

We now turn our attention to context-free grammars over monoidal categories.
The multicategory of spliced arrows is defined for any category. However, for
categories equipped with a monoidal structure, it is natural to consider more
general kinds of holes than allowed by the spliced arrows construction (Figure 4).
Rather than tuples of disjoint pieces, we should allow the possibility that a hole
can be surrounded by strings. The necessity of considering these more general
holes is forced upon us by various examples that could not be captured using
spliced arrows (e.g. Examples 4.2 and 4.3). Proofs omitted from this section may
be found in Appendix G.

4.1 The symmetric multicategory of diagram contexts

Context-free monoidal grammars should contain productions from a variable
to an incomplete diagram containing multiple variables or “holes”. This section
constructs diagram contexts over an arbitrary polygraph. Diagram contexts rep-
resent the incomplete derivation of a monoidal term: as such, they consist of
string diagrams over which we add “holes”. We shall notate these holes in string
diagrams as pink boxes (e.g. Figure 4).

Fig. 4: (Left) A spliced arrow is a tuple of morphisms. (Right) In a monoidal
category, there is the possibility of more general holes, which do not split a
morphism into disjoint pieces.

Substituting another diagram context inside a hole induces a symmetric mul-
ticategorical structure on the diagrams: symmetry means that we do not dis-
tinguish the specific order in which the holes appear. This allows us to avoid
declaring a particular ordering of holes when defining a context-free monoidal
grammar. We could achieve this by introducing a rule that allows us to permute
contexts. However, this breaks the correspondence between terms and deriva-
tions. Instead, we shall use shufflings, inspired by the work of Shulman [48].

Definition 4.1. A shuffling of two lists, Ψ ∈ Shuf(Γ,∆) is any list Ψ that
contains the elements of both Γ and ∆ in any order but preserving the relative
orders of Γ and ∆.

For instance, if Γ = [x , y , z] and ∆ = [u , v], a shuffling is Ψ =
[x , u , y , z , v], but not [y , u , z , x , v]. The theory of diagram contexts
will introduce a shuffling every time it mixes two contexts: this way, if a term
was derived by combining two contexts, we can always reorder these contexts
however we want. For instance, the term u , v ⊢ u # v was derived from
composing the axioms u ⊢ u and v ⊢ v ; by choosing a different shuffling,
we can also derive the term v , u ⊢ u # v . Let us now formally introduce the
theory.

Definition 4.2. The theory of diagram contexts P over a polygraph, P, is
described by the following logic. This logic contains objects (A,B,C, ... ∈ P∗

obj)
that consist of lists of types of the polygraph, X,Y, Z, ... ∈ Pobj; it also contains
contexts (Γ,∆, Ψ, ...) that consist of lists of pairs of objects. Apart from the single
variables (x, y, z, ..) and the generators of the polygraph (f, g, h, ...); we consider
fully formed terms (t1, t2, ...).

Identity

⊢ id : XX

Generator

⊢ f : X1,...,Xn
Y 1,...,Ym

Hole

x : A
B ⊢ x : A

B

Sequential
Γ ⊢ t1 : A

B ∆ ⊢ t2 : BC Φ ∈ Shuf(Γ ;∆)

Φ ⊢ t1 # t2 : A
C

Parallel
Γ ⊢ t1 : A1

B1
∆ ⊢ t2 : A2

B2
Φ ∈ Shuf(Γ ;∆)

Φ ⊢ t1 ⊗ t2 : A1++A2
B1++B2

Where ++ denotes the concatenation of lists. Every term in a given context has
a unique derivation. We consider terms up to α-equivalence and we impose the
following equations over the terms whenever they are constructed over the same
context: (t1 # t2) # t3 = t1 # (t2 # t3); t # id = t; t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2)⊗ t3; (t1 #
t2) ⊗ (t3 # t4) = (t1 ⊗ t3) # (t2 ⊗ t4).

Proposition 4.1. The multicategory of derivable sequents in the theory of di-
agram contexts is symmetric. In logical terms, exchange is admissible in the
theory of diagram contexts: whenever we can prove that a diagram context exists
under certain context Γ , we can prove that it exists under a permutation of Γ .

Proposition 4.2. Derivable sequents in the theory of diagram contexts over a
polygraph P form the free strict monoidal category over the polygraph extended
with special “hole” generators, P + {hA,B : A → B | A,B ∈ P∗

obj}. Derivable

sequents over the empty context form the free strict monoidal category over the
polygraph P. Moreover, there exists a symmetric multifunctor

i : |F⊗P| → P

interpreting each monoidal term as its derivable sequent.

Remark 4.1. Various notions of “holes in a monoidal category” exist in the liter-
ature, under names such as optics, contexts, or wiring diagrams [38,40]. Hefford
and the authors [41,15] gave a universal characterization of the produoidal cat-
egory of optics over a monoidal category. This produoidal structure is useful
for describing decompositions of diagrams. The above logic generates a multi-
category similar to the operad of directed, acyclic wiring diagrams introduced
by Patterson, Spivak and Vagner [38]; whose operations are generic morphism
shapes, rather than holes in a specific monoidal category.

Definition 4.3. A symmetric multigraph is a multigraph G equipped with bijec-
tions σ∗ : G(X1, ..., Xn;Y) ∼= G(Xσ(1), ..., Xσ(n);Y) for every list X1, ..., Xn of
sorts and every permutation σ, satisfying (σ · τ)∗ = σ∗ # τ∗ and id∗ = id. A mor-
phism of symmetric multigraphs is a morphism of multigraphs which commutes
with the bijections.

Definition 4.4. Every multigraph, M , freely induces a symmetric multigraph,
clique(M), with the same objects and, for each f ∈ M(X1, ..., Xn;Y), a clique
of elements

fσ ∈ clique(M)(Xσ(1), ..., Xσ(n);Y),

connected by symmetries, meaning that σ∗(fτ) = fσ·τ . This is the left adjoint to
the inclusion of symmetric multigraphs into multigraphs.

Remark 4.2. Given any symmetric multigraph G, finding a multigraph M whose
clique recovers it, clique(M) = G, amounts to choosing a representative for each
one of the cliques of the multigraph. Any symmetric multigraph can be (non-
uniquely) recovered in this way: for each multimorphism f ∈ G(X1, ..., Xn;Y),
we can consider its orbit under the action of the symmetric group, orb(f) =
{σ∗(f) | σ ∈ Sn} – the orbits of different elements may coincide, but each element
does have one – and picking an element go for each orbit, o ∈ {orb(f) | f ∈ G},
recovers a multigraph giving rise to the original symmetric multigraph.

Definition 4.5. The theory of diagram contexts over a finitely presented mo-
noidal category, (P, E , l, r) (Definition 2.6), is the theory of diagram contexts
over its generators, quotiented by its equations; in other words, it is the equal-
izer of the two projections of each equation, interpreted as derivable sequents
(l∗ # i), (r∗ # i) : E → P .

Proposition 4.3. The formation of diagram contexts in a monoidal category or
polygraph extends to functors : MonCat → MultiCat and : PolyGraph →
MultiGraph, which moreover commute with the free multicategory F▽ and free
monoidal category functors F⊗.

At this point, the reader may doubt that the formation of diagram contexts
has a left adjoint similar to the contour functor for spliced arrows. Indeed, in
order to recover a left adjoint, we shall need to introduce another multicategory
of diagrams which we call raw optics. This technical device will allow us to
prove our main theorem (Theorem 6.1). However, let us first see the definition
of context-free monoidal grammar, and some examples.

4.2 Context-Free Monoidal Grammars

We now have the ingredients for our central definition. A context-free monoidal
grammar specifies a language of string diagrams by a collection of rewrites be-
tween diagram contexts, where the non-terminals of a context-free grammar are
now (labelled) holes in a diagram (e.g. Figure 8). Our definition is entirely anal-
ogous to Definition 2.3, but using our new symmetric multicategory of diagram
contexts in a monoidal category, instead of spliced arrows.

Definition 4.6. A context-free monoidal grammar over a strict monoidal cat-
egory (C,⊗, I) is a morphism of symmetric multigraphs Ψ : G → | C |, into the
underlying multigraph of diagram contexts in C, where G is finite, and a start
sort SX,Y ∈ Ψ−1(XY).

We shall use the notation S ⊏ A
B to indicate that Ψ(S) = A

B, following
the convention in the literature [35]. A morphism of symmetric multigraphs
Ψ : G → | C | defining a grammar uniquely determines, via the free-forgetful
adjunction, a symmetric multifunctor Ψ̂ : F▽G → C , mapping (closed) deriva-
tions to morphisms of C. The language of a grammar is then defined analogously
to Definition 2.4:

Definition 4.7. Let (Ψ : G → | C |, S ⊏ A
B) be a context-free monoidal gram-

mar. The language of Ψ is the set of morphisms in C(A;B) given by the image
under Ψ̂ of the set of derivations F▽G(;S). A set of morphisms L in C is a
context-free monoidal language if and only if there exists a context-free monoi-
dal grammar whose language is L.

Example 4.1 (Classical context-free languages). Every context-free monoidal gram-
mar of the following form is equivalent to a classical context-free grammar of
words. Let Γ be a single-sorted finite polygraph whose generators are all of ar-
ity and coarity 1. Then context-free monoidal grammars over F⊗Γ with a start
symbol ϕ(S) ⊏ 1

1 are context-free grammars of words over Γ . Figure 5 gives the
classical example of balanced parentheses. Similarly, every context-free grammar
of words may be encoded as a context-free monoidal grammar in this way.

Example 4.2 (Context-free tree grammars). Context-free tree grammars [23,44]
are defined over ranked alphabets of terminals and non-terminals, which amount
to polygraphs in which the generators have arbitrary arity (the rank) and coarity
1. Productions have the form A(x1, ..., xm) → t where the left hand side is a non-
terminal of rank m whose frontier is labelled by the variables xi in order, and

S ((SS S SS

Fig. 5: Balanced parentheses as a context-free monoidal grammar.

whose right hand side is a tree t built from terminals and non-terminals, and
whose frontier is labelled by variables from the set {x1, ..., xm}. Note that t may
use the variables non-linearly.

For example, let S be a non-terminal with coarity 0, A a non-terminal with
coarity 2, f a terminal of coarity 2, and x a terminal of coarity 0 (a leaf).
Then a possible rule over these generators is A(x1, x2) → f(x1, A(x1, x2)), where
x1 appears non-linearly. In order to allow such non-linear use of variables in a
context-free monoidal grammar, we can consider the free cartesian category over
Γ . In terms of string diagrams, this amounts to introducing new generators for
copying () and deleting variables (), satisfying some equations which we
recall in Appendix D.

Let Γ be a polygraph in which generators have arbitrary arity, and coarity
1, as above. Context-free monoidal grammars over the free cartesian category
on Γ , with a start symbol S ⊏ 0

1 are context-free tree grammars. In Figure 6 we
extend the above data to a full example. Note that by allowing start symbols
S ⊏ 0

n, we can produce forests of n trees.

S A
x

x
A

A
f A f

x

x f
f

x

x f
f

x

=

Fig. 6: Example of a context-free tree grammar as a context-free monoidal gram-
mar. The string diagrams at the bottom are equal in the free cartesian category
over the polygraph of terminals.

A
A A AS A

Fig. 7: A hypergraph grammar for simple control flow graphs with branching and
looping, as a context-free monoidal grammar. Based on Habel [25, Example 3.3].

Example 4.3 (Hyperedge-replacement grammars). Hyperedge-replacement (HR)
grammars are a kind of context-free graph grammar [20]. We consider HR gram-
mars in normal form in the sense of Habel [25, Theorem 4.1]. A production

N → R of an HR grammar has N a non-terminal with arity and coarity, and R
a hypergraph with the same arity and coarity3, whose hyperedges are labelled by
some finite set of terminals and non-terminals. Just as trees are morphisms in free
cartesian monoidal categories (Example 4.2), hypergraphs are the morphisms of
monoidal categories equipped with extra structure, known as hypergraph cat-
egories [42,5,21]. Generators in a polygraph are exactly directed hyperedges.
The extra structure in a hypergraph category, which we recall in Appendix E,
amounts to a combinatorial encoding of patterns of wiring between nodes.

Let Γ be a polygraph of terminal hyperedges, G a multigraph of non-terminal
rules, and S ∈ G a start symbol. Then context-free monoidal grammars (G →
|Hyp[Γ]|, S) over the free hypergraph category on Γ are exactly hyperedge re-
placement grammars over Γ (e.g. Figure 7). A hole in a morphism in Hyp[Γ]
is a placeholder for an (n,m) hyperedge, the grammar labels these holes by
non-terminals, and composition corresponds to hyperedge replacement.

Example 4.4 (Unbraids). We return to the language of unbraids suggested in
Proposition 3.2. Take the grammar over the over- and under-braiding polygraph
depicted in Figure 8, with start symbol S ⊏ 2

2. The language of this grammar
consists of unbraids on two strings.

S S S S S S S S

Fig. 8: A context-free monoidal grammar of unbraids, with start symbol S.

Let us record some basic closure properties of context-free monoidal languages.

Proposition 4.4. Context-free monoidal languages over C with start symbol
S ⊏ X

Y are closed under union. The underlying morphism is given by the copair-
ing, and start symbols can be unified by introducing a fresh symbol and produc-
tions where necessary, as in the classical case. Context-free monoidal languages
are also closed under images of strict monoidal functors: the underlying mor-
phism is given by postcomposition.

5 Optical Contour of a Multicategory

An important realization of Melliès and Zeilberger is that the formation of spliced
arrows in a category has a left adjoint, which they call the contour of a mul-
ticategory [35, Section 3.2]. This adjunction is a key conceptual tool in their
generalized version of the Chomsky-Schützenberger representation theorem, and
is closely linked to the notion of item in LR parsing [35]. In this section, we
present a similar adjunction for the monoidal setting. However, it is not clear
that the formation of diagram contexts has a left adjoint. We must therefore
first conduct a dissection of diagram contexts into raw optics.
3 A multi-pointed hypergraph in Habel’s terminology.

5.1 The multicategory of raw optics

A raw optic is a tuple of morphisms obtained by cutting a diagram context into
a sequence of disjoint pieces. The term optics refers to a notion closely related to
diagram contexts, which are defined exactly as a quotient of raw optics [10,39].
In Section 5 we shall see that raw optics has a left adjoint, the optical contour,
and this will be enough to prove our representation theorem (Theorem 6.1).

Definition 5.1. The multicategory of raw optics over a strict monoidal category
C, denoted ROpt[C], is defined to have, as objects, pairs A

B of objects of C, and,
as its set of multimorphisms, ROpt[C](A1

B1
, ...,An

Bn
; ST), the following set, where we

write AB for A ⊗B,

∑
Mi,Ni∈C

C(S;M1A1N1)×
n−1∏
i=1

C(MiBiNi;Mi+1Ai+1Ni+1)× C(MnBnNn;T).

As a special case, ROpt[C](; ST) := C(S;T). In other words, a multimorphism,
from A1

B1
, ...,An

Bn
to S

T , consists of two families of objects, M1,...,Mn and N1, ..., Nn,
and a family of functions, (f0, ..., fn), with types f0 : S → M1 ⊗ A1 ⊗ N1; with
f i : Mi⊗Bi⊗Ni →Mi+1⊗Ai+1⊗Ni+1; for each 1 ≤ i ≤ n−1; and fn : Mn⊗Bn⊗

Nn → T . In the special nullary case, we have a single morphism f0 : S → T .
Identities are given by pairs (idA, idB). Given two raw optics f = (f0, ..., fn)

and g = (g0, ..., gm), their composition is defined by

f #i g := (g0, ..., gi # (id ⊗ f0 ⊗ id), ..., id ⊗ fi ⊗ id, ..., (id ⊗ fn ⊗ id) # gi+1, ..., gn).

M

N

f AS

h M

N

gB T f
AS

h

gB T

M'

N

f AS

h

N

gB T

M'

Fig. 9: Two raw optics (left, centre) in ROpt[C](AB; ST) which quotient to the same
diagram context. Note that a raw optic is not the same as a spliced arrow: the
types M,N must match.

Every raw optic can be glued into a diagram context, as illustrated in Fig-
ure 9. More precisely, we have the following result.

Proposition 5.1. There is an identity on objects multifunctor q : ROpt[C] →
C mapping each raw optic to its corresponding diagram context. Equivalently,

there is an identity on objects symmetric multifunctor q∗ : clique(ROpt[C]) →
C ; this symmetric multifunctor is full.

Proposition 5.2. The construction of raw optics extends to a functor ROpt :
MonCat → MultiCat between the categories of strict monoidal categories and
strict monoidal functors, and multicategories and multifunctors.

Remark 5.1. We could have defined context-free monoidal grammars as mor-
phisms into raw optics, rather than diagram contexts, but this would require
an arbitrary choice of raw optic for each rule, as in Figure 9. In particular, this
would force us to choose a particular ordering of the holes, since raw optics do
not form a symmetric multicategory. On the other hand, that such a choice exists
will be needed to prove our representation theorem (Section 6).

5.2 Optical contour

We now introduce the left adjoint to the formation of raw optics, which we
call the optical contour of a multicategory. The difference from the contour of
Section 2 is that additional objects Mi, Ni are introduced which keep track of
strings that might surround holes. This gives rise to a strict monoidal category.

YL
p

Y

A
M1
AL
N1

M1
AR
N1

p,0 (p,1)

M2
BL
N2

YR

p,2

M2
BR
N2

B

Fig. 10: A multimorphism p ∈ M(A,B;Y) and its three sectors given by optical
contour: (p, 0) : Y L → M1 ⊗ AL ⊗ N1, (p, 1) : M1 ⊗ AR ⊗ N1 → M2 ⊗ BL ⊗
N2, (p, 2) :M2 ⊗BR ⊗N2 → Y R.

Definition 5.2. Let M be a multicategory. Its optical contour, CM, is the strict
monoidal category presented by a polygraph whose generators are given by taking
contours of multimorphisms in M. Each multimorphism gives rise to a set of
generators for the monoidal category CM – its set of sectors, as in Figure 10.

Explicitly, for each object A ∈ M, the optical contour CM contains a left
polarized, AL, and a right polarized, AR, version of the object. Additionally,
for each multimorphism f ∈ M(X1, ..., Xn;Y), there exists a family of objects
Mf

1 , ...,M
f
n , N

f
1 , ..., N

f
n , whose superscripts we omit when they are clear from

context. The morphisms are given by the following generators. For each f ∈
M(X1, ..., Xn;Y), we consider the following n+ 1 generators:

(f, 0) : Y L →Mf
1 ⊗XL

1 ⊗Nf
1 ,

(f, i) :Mf
i ⊗XR

i ⊗Nf
i →Mf

i+1 ⊗XL
i+1 ⊗Nf

i+1, for 1 ⩽ i ⩽ n− 1, and

(f, n) :Mf
n ⊗XR

n ⊗Nf
n → Y R.

In particular, for a nullary multimorphism f ∈ M(;Y), we consider a generator
(f, 0) : Y L → Y R. Further, we ask for the following equations which ensure
that the optical contour preserves identities and composition: for all x ∈ M,

(idX , 0) = idXL , (idX , 1) = idXR with M idX
1 = N idX

1 = I; and given any f ∈
M(X1, ..., Xn;Yi) and g ∈ M(Y1, ..., Ym;Z),

(f #ig, j) =

(g, j) j < i, with Mf#g
j =Mg

j , N
f#g
j = Ng

j

(g, i) # (id ⊗ (f, 0)⊗ id) j = i, with Mf#g
i =Mg

j ⊗Mf
0

idMg
i
⊗ (f, j − i)⊗ idNg

i
i < j < i+ n, with Mf#g

j =Mg
i ⊗Mf

j−i

(id ⊗ (f, n)⊗ id) # (g, i+ 1) j = i+ n+ 1, with Mf#g
j =Mg

i ⊗Mf
n

(g, j − n) j > i+ n+ 1 with Mf#g
j =Mg

j−n.

In particular, when f ∈ M(;Yi) is nullary, (f #i g, 0) = gi # f0 # gi+1.

Theorem 5.1. Optical contour is left adjoint to raw optics; there exists an ad-
junction (C ⊣ ROpt) : MonCat → MultiCat.

Proof. See Appendix C.

6 A Monoidal Representation Theorem

The Chomsky-Schützenberger representation theorem says that every context-
free language can be obtained as the image under a homomorphism of the inter-
section of a Dyck language and a regular language [9]. Melliès and Zeilberger [34]
use their splicing-contour adjunction to give a novel proof of this theorem for
context-free languages in categories: the classical version is recovered when the
category is a free monoid. The role of the Dyck language, providing linearizations
of derivation trees, is taken over by contours of derivations.

Monoidal categories provide a more striking case: the Dyck language is not
needed because the information that parentheses encode can be carried instead
by tensor products. In this section, we show that a regular monoidal language of
optical contours is sufficient to reconstruct the original language. Theorem 6.1
states that every context-free monoidal language is the image under a monoidal
functor of a regular monoidal language.

Our strategy will be to first choose a factoring of a grammar into raw op-
tics, then use the optical contour/raw optics adjunction to produce the required
monoidal functor. We must first establish that such a factoring exists. Omitted
proofs may be found in Appendix I.

Lemma 6.1. Any morphism of symmetric multigraphs underlying a context-free
monoidal grammar, ϕ : G → | C |, factors (non-uniquely) through the quotient-
ing of raw optics (Proposition 5.1); meaning that there exists some multigraph
G′ satisfying G = clique(G′), and some morphism ϕr : G

′ → |ROpt[C]|, such that
ϕ = clique(ϕr) # q∗.

Call the factor ϕr : G′ → |ROpt[C]| a raw representative of ϕ. It amounts to
choosing a fixed ordering of the holes in a diagram context for each rule in the
grammar, and a particular splicing into a raw optic.

Lemma 6.2. Let G = (ϕ, S) be a context-free monoidal grammar. Then the
language of any raw representative ϕr of ϕ (with start symbol S) equals the
language of G. That is, ϕr[F▽G

′(;S)] = ϕ[F▽G(;S)].

Lemma 6.3. A raw representative ϕr : G′ → |ROpt[C]| uniquely determines a
strict monoidal functor Iϕ : F⊗(CG′) → C.

We shall see that this monoidal functor maps the following regular monoidal
language over CG to the language of the original context-free monoidal grammar.

Definition 6.1. Let G = (ϕ : G → | C |, S) be a context-free monoidal gram-
mar, and ϕr a raw representative with domain G′. Define a regular representa-
tive of G to be the regular monoidal grammar R = (id : CG′ → CG′, SL, SR) over
optical contours of G′ whose morphism of polygraphs is the identity.

Lemma 6.4. Given a multigraph G, there is a bijection between derivations
rooted at a sort S and optical contours from SL to SR, i.e. F▽G(;S) ∼= F⊗(CG)(SL;SR).

Theorem 6.1. The language of a context-free monoidal grammar G = (ϕ : G→
| C |, S) equals the image of a regular representative under the monoidal functor
Iϕ of Lemma 6.3.

Theorem 6.1 is at first quite surprising, since in comparison with the usual
Chomsky-Schützenberger theorem and its generalization [35], one might expect
to see an intersection of a regular monoidal language and a context-free mo-
noidal language. Instead, this theorem tells us that regular monoidal languages
are powerful enough to encode context-free monoidal languages, even while the
latter is strictly more expressive than the former. Just as a context-free gram-
mar suffices to specify a programming language which may encode instructions
for arbitrary computations, regular monoidal languages can specify arbitrary
context-free monoidal languages, with a monoidal functor effecting the “compi-
lation”.

7 Conclusion

There are still many avenues to explore in this structural approach to context-
free languages. One obvious direction is to investigate a notion of pushdown
automaton for context-free monoidal languages. In fact, it still remains to be
elaborated how pushdown automata emerge for context-free languages over plain
categories. Following the general principle of parsing as a lifting problem [35],
and the duality of grammars (fibered) and automata (indexed) may provide some
clue to characterizing such automata by a universal property.

The study of languages and the dependence relations that diagram contexts
naturally present may be useful to the study of complexity in monoidal cate-
gories, such as the notion of “monoidal width” proposed by Di Lavore and Sobo-
ciński [31,32]. Conversely, measures of monoidal complexity may inform the cost
of parsing different terms.

Finally, different types of string diagram exist for a variety of widely applied
categorical structures beyond monoidal categories, such as double categories [37].
There are many opportunities to extend the general principle elaborated here to
a notion of context-free language in these structures.

References

1. Samson Abramsky and Bob Coecke. Categorical quantum mechanics. In Kurt En-
gesser, Dov M. Gabbay, and Daniel Lehmann, editors, Handbook of Quantum Logic
and Quantum Structures, pages 261–323. Elsevier, Amsterdam, 2009. URL: https:
//www.sciencedirect.com/science/article/pii/B9780444528698500104, doi:
10.1016/B978-0-444-52869-8.50010-4.

2. Jirí Adámek, Robert S.R. Myers, Henning Urbat, and Stefan Milius. Varieties of
languages in a category. In 2015 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 414–425, 2015. doi:10.1109/LICS.2015.46.

3. Achim Blumensath. Algebraic language theory for Eilenberg–Moore algebras. Log-
ical Methods in Computer Science, 17, 2021.

4. Mikołaj Bojańczyk, Bartek Klin, and Julian Salamanca. Monadic monadic sec-
ond order logic, 2022. URL: https://arxiv.org/abs/2201.09969, doi:10.48550/
ARXIV.2201.09969.

5. Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio
Zanasi. String diagram rewrite theory I: Rewriting with Frobenius structure. J.
ACM, 69(2), mar 2022. doi:10.1145/3502719.

6. Filippo Bonchi, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Graphical
affine algebra. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–12. IEEE,
2019. doi:10.1109/LICS.2019.8785877.

7. Francis Bossut, Max Dauchet, and Bruno Warin. A Kleene theorem for a class of
planar acyclic graphs. Inf. Comput., 117:251–265, 03 1995. doi:10.1006/inco.
1995.1043.

8. H.J. Sander Bruggink and Barbara König. Recognizable languages of arrows and
cospans. Mathematical Structures in Computer Science, 28(8):1290–1332, 2018.

9. Noam Chomsky and Marcel-Paul Schützenberger. The algebraic theory of
context-free languages. In P. Braffort and D. Hirschberg, editors, Computer
Programming and Formal Systems, volume 35 of Studies in Logic and the
Foundations of Mathematics, pages 118–161. Elsevier, 1963. URL: https:
//www.sciencedirect.com/science/article/pii/S0049237X08720238, doi:10.
1016/S0049-237X(08)72023-8.

10. Bryce Clarke, Derek Elkins, Jeremy Gibbons, Fosco Loregiàn, Bartosz Milewski,
Emily Pillmore, and Mario Román. Profunctor optics, a categorical update. CoRR,
abs/2001.07488, 2020. URL: https://arxiv.org/abs/2001.07488, arXiv:2001.
07488.

11. Thomas Colcombet and Daniela Petrisan. Automata minimization: a functorial
approach. Log. Methods Comput. Sci., 16(1), 2020.

12. Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Encyclopedia of Mathematics and its Ap-
plications. Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

13. Philippe de Groote. Towards abstract categorial grammars. In Proceedings of
the 39th Annual Meeting of the Association for Computational Linguistics, pages

https://www.sciencedirect.com/science/article/pii/B9780444528698500104
https://www.sciencedirect.com/science/article/pii/B9780444528698500104
https://doi.org/10.1016/B978-0-444-52869-8.50010-4
https://doi.org/10.1016/B978-0-444-52869-8.50010-4
https://doi.org/10.1109/LICS.2015.46
https://arxiv.org/abs/2201.09969
https://doi.org/10.48550/ARXIV.2201.09969
https://doi.org/10.48550/ARXIV.2201.09969
https://doi.org/10.1145/3502719
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.1006/inco.1995.1043
https://doi.org/10.1006/inco.1995.1043
https://www.sciencedirect.com/science/article/pii/S0049237X08720238
https://www.sciencedirect.com/science/article/pii/S0049237X08720238
https://doi.org/10.1016/S0049-237X(08)72023-8
https://doi.org/10.1016/S0049-237X(08)72023-8
https://arxiv.org/abs/2001.07488
https://arxiv.org/abs/2001.07488
https://arxiv.org/abs/2001.07488
https://doi.org/10.1017/CBO9780511977619

252–259, Toulouse, France, July 2001. Association for Computational Linguistics.
URL: https://aclanthology.org/P01-1033, doi:10.3115/1073012.1073045.

14. Volker Diekert and Grzegorz Rozenberg. The Book of Traces. World Scientific,
1995. doi:10.1142/2563.

15. Matthew Earnshaw, James Hefford, and Mario Román. The Produoidal Alge-
bra of Process Decomposition. In Aniello Murano and Alexandra Silva, edi-
tors, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024),
volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages
25:1–25:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.CSL.2024.25, doi:10.4230/LIPIcs.CSL.2024.25.

16. Matthew Earnshaw and Paweł Sobociński. Regular monoidal languages. In
Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2022),
volume 241 of Leibniz International Proceedings in Informatics (LIPIcs), pages
44:1–44:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16842, doi:
10.4230/LIPIcs.MFCS.2022.44.

17. Matthew Earnshaw and Paweł Sobociński. String Diagrammatic Trace Theory.
In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS
2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 43:1–43:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2023/18577,
doi:10.4230/LIPIcs.MFCS.2023.43.

18. Matthew Earnshaw and Pawel Sobociński. Regular planar monoidal languages.
Journal of Logical and Algebraic Methods in Programming, 2024. In Press.

19. Samuel Eilenberg and Jesse B. Wright. Automata in general algebras. Information
and Control, 11(4):452–470, 1967. doi:10.1016/S0019-9958(67)90670-5.

20. Joost Engelfriet. Context-Free Graph Grammars, pages 125–213. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997. doi:10.1007/978-3-642-59126-6_3.

21. Brendan Fong and David I. Spivak. Hypergraph categories. Journal of Pure and
Applied Algebra, 223(11):4746–4777, 2019. URL: https://www.sciencedirect.
com/science/article/pii/S0022404919300489, doi:10.1016/j.jpaa.2019.02.
014.

22. Tobias Fritz. A synthetic approach to Markov kernels, conditional independence,
and theorems on sufficient statistics. CoRR, abs/1908.07021, 2019. URL: http:
//arxiv.org/abs/1908.07021, arXiv:1908.07021.

23. Ferenc Gécseg and Magnus Steinby. Tree Languages, page 1–68. Springer-Verlag,
Berlin, Heidelberg, 1997.

24. Gary Griffing. Composition-representative subsets. Theory and Applications of
Categories, 11(19):420–437, 2003.

25. Annegret Habel. Hyperedge Replacement: Grammars and Languages, volume 643
of Lecture Notes in Computer Science. Springer, 1992. URL: https://doi.org/
10.1007/BFb0013875, doi:10.1007/BFB0013875.

26. Tobias Heindel. The Chomsky-Schützenberger theorem with circuit diagrams in
the role of words. Abstract, 2017.

27. Tobias Heindel. A Myhill-Nerode theorem beyond trees and forests via finite syn-
tactic categories internal to monoids. Preprint, 2017.

28. Alan Jeffrey. Premonoidal categories and a graphical view of programs. Preprint,
Dec, pages 80688–7, 1997.

https://aclanthology.org/P01-1033
https://doi.org/10.3115/1073012.1073045
https://doi.org/10.1142/2563
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.25
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.25
https://doi.org/10.4230/LIPIcs.CSL.2024.25
https://drops.dagstuhl.de/opus/volltexte/2022/16842
https://doi.org/10.4230/LIPIcs.MFCS.2022.44
https://doi.org/10.4230/LIPIcs.MFCS.2022.44
https://drops.dagstuhl.de/opus/volltexte/2023/18577
https://doi.org/10.4230/LIPIcs.MFCS.2023.43
https://doi.org/10.1016/S0019-9958(67)90670-5
https://doi.org/10.1007/978-3-642-59126-6_3
https://www.sciencedirect.com/science/article/pii/S0022404919300489
https://www.sciencedirect.com/science/article/pii/S0022404919300489
https://doi.org/10.1016/j.jpaa.2019.02.014
https://doi.org/10.1016/j.jpaa.2019.02.014
http://arxiv.org/abs/1908.07021
http://arxiv.org/abs/1908.07021
https://arxiv.org/abs/1908.07021
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1007/BFB0013875

29. André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Math-
ematics, 88(1):55–112, 1991. URL: https://www.sciencedirect.com/science/
article/pii/000187089190003P, doi:10.1016/0001-8708(91)90003-P.

30. Mohammad Amin Kuhail, Shahbano Farooq, Rawad Hammad, and Mohammed
Bahja. Characterizing visual programming approaches for end-user developers: A
systematic review. IEEE Access, 9:14181–14202, 2021.

31. Elena Di Lavore. Monoidal Width. PhD thesis, Tallinn University of Technology,
2023.

32. Elena Di Lavore and Pawel Sobocinski. Monoidal width. Log. Methods Comput.
Sci., 19(3), 2023. URL: https://doi.org/10.46298/lmcs-19(3:15)2023, doi:
10.46298/LMCS-19(3:15)2023.

33. Tom Leinster. Higher Operads, Higher Categories. London Mathematical So-
ciety Lecture Note Series. Cambridge University Press, 2004. doi:10.1017/
CBO9780511525896.

34. Paul-André Melliès and Noam Zeilberger. Parsing as a Lifting Problem and the
Chomsky-Schützenberger Representation Theorem. In MFPS 2022-38th conference
on Mathematical Foundations for Programming Semantics, 2022.

35. Paul-André Melliès and Noam Zeilberger. The categorical contours of the
Chomsky-Schützenberger representation theorem. Preprint, December 2023. URL:
https://hal.science/hal-04399404.

36. Paul-André Melliès. Categorical semantics of linear logic. In Interactive models
of computation and program behaviour, panoramas et synthèses, volume 27, pages
1–196. Société Mathématique de France, 2009.

37. David Jaz Myers. String diagrams for double categories and equipments, 2018.
arXiv:1612.02762.

38. Evan Patterson, David I. Spivak, and Dmitry Vagner. Wiring diagrams as normal
forms for computing in symmetric monoidal categories. Electronic Proceedings in
Theoretical Computer Science, 333:49–64, February 2021. URL: http://dx.doi.
org/10.4204/EPTCS.333.4, doi:10.4204/eptcs.333.4.

39. Mitchell Riley. Categories of Optics. arXiv preprint arXiv:1809.00738, 2018.
40. Mario Román. Open diagrams via coend calculus. Electronic Proceedings in The-

oretical Computer Science, 333:65–78, Feb 2021. URL: http://dx.doi.org/10.
4204/EPTCS.333.5, doi:10.4204/eptcs.333.5.

41. Mario Román. Monoidal Context Theory. PhD thesis, Tallinn University of Tech-
nology, 2023.

42. Robert Rosebrugh, Nicoletta Sabadini, and Robert F.C. Walters. Generic com-
mutative separable algebras and cospans of graphs. Theory and applications of
categories, 15:164–177, 2005.

43. Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-
assembly of DNA Sierpinski triangles. PLOS Biology, 2(12), 12 2004. doi:10.
1371/journal.pbio.0020424.

44. William C. Rounds. Context-free grammars on trees. In Proceedings of the First
Annual ACM Symposium on Theory of Computing, STOC ’69, page 143–148,
New York, NY, USA, 1969. Association for Computing Machinery. doi:10.1145/
800169.805428.

45. Grzegorz Rozenberg. Handbook Of Graph Grammars And Computing By Graph
Transformation, Vol 1: Foundations. World Scientific Publishing Company, 1997.
URL: https://books.google.ee/books?id=KwbtCgAAQBAJ.

46. Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On
multiple context-free grammars. Theoretical Computer Science, 88(2):191–

https://www.sciencedirect.com/science/article/pii/000187089190003P
https://www.sciencedirect.com/science/article/pii/000187089190003P
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.46298/lmcs-19(3:15)2023
https://doi.org/10.46298/LMCS-19(3:15)2023
https://doi.org/10.46298/LMCS-19(3:15)2023
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1017/CBO9780511525896
https://hal.science/hal-04399404
https://arxiv.org/abs/1612.02762
http://dx.doi.org/10.4204/EPTCS.333.4
http://dx.doi.org/10.4204/EPTCS.333.4
https://doi.org/10.4204/eptcs.333.4
http://dx.doi.org/10.4204/EPTCS.333.5
http://dx.doi.org/10.4204/EPTCS.333.5
https://doi.org/10.4204/eptcs.333.5
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1371/journal.pbio.0020424
https://doi.org/10.1145/800169.805428
https://doi.org/10.1145/800169.805428
https://books.google.ee/books?id=KwbtCgAAQBAJ

229, 1991. URL: https://www.sciencedirect.com/science/article/pii/
030439759190374B, doi:10.1016/0304-3975(91)90374-B.

47. Peter Selinger. A survey of graphical languages for monoidal categories. In Bob
Coecke, editor, New Structures for Physics, pages 289–355. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-12821-9_4.

48. Michael Shulman. Categorical logic from a categorical point of view. Available on
the web, 2016. URL: https://mikeshulman.github.io/catlog/catlog.pdf.

49. James W. Thatcher and J. B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical systems
theory, 2(1):57–81, Mar 1968.

50. Bret Tilson. Categories as algebra: An essential ingredient in the
theory of monoids. Journal of Pure and Applied Algebra, 48(1):83–
198, 1987. URL: https://www.sciencedirect.com/science/article/pii/
0022404987901083, doi:10.1016/0022-4049(87)90108-3.

51. Robert F.C. Walters. A note on context-free languages. Journal of Pure and
Applied Algebra, 62(2):199–203, 1989. doi:10.1016/0022-4049(89)90151-5.

52. Vladimir Zamdzhiev. Rewriting Context-free Families of String Diagrams. PhD
thesis, University of Oxford, 2016.

https://www.sciencedirect.com/science/article/pii/030439759190374B
https://www.sciencedirect.com/science/article/pii/030439759190374B
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1007/978-3-642-12821-9_4
https://mikeshulman.github.io/catlog/catlog.pdf
https://www.sciencedirect.com/science/article/pii/0022404987901083
https://www.sciencedirect.com/science/article/pii/0022404987901083
https://doi.org/10.1016/0022-4049(87)90108-3
https://doi.org/10.1016/0022-4049(89)90151-5

A Monoidal Categories

Definition A.1. A strict monoidal category C consists of a monoid of objects,
or resources, (Cobj ,⊗, I), and a collection of morphisms, or processes, C(X;Y),
indexed by an input X ∈ Cobj and an output Y ∈ Cobj. A strict monoidal
category is endowed with operations for the sequential and parallel composition
of processes, respectively

(#) : C(X;Y)× C(Y ;Z) → C(X;Z),

(⊗) : C(X;Y)× C(X ′;Y ′) → C(X ⊗X ′;Y ⊗ Y ′),

and a family of identity morphisms, idX ∈ C(X;X). Strict monoidal categories
must satisfy the following axioms.

1. Sequencing is unital, f # idY = f and idX # f = f .
2. Sequencing is associative, f # (g # h) = (f # g) # h.
3. Tensoring is unital, f ⊗ idI = f and idI ⊗ f = f .
4. Tensoring is associative, f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h.
5. Tensoring and identities interchange, idA ⊗ idB = idA⊗B.
6. Tensoring and sequencing interchange,

(f # g)⊗ (f ′ # g′) = (f ⊗ f ′) # (g ⊗ g′).

Remark A.1. We take this particular formulation of the definition, slightly dif-
ferent from that found in most references, from the thesis of Román [41].

Definition A.2. A symmetric strict monoidal category is a monoidal category
equipped with a natural family of isomorphisms σX,Y : X⊗Y → Y ⊗X for every
pair of objects X,Y . We can extend string diagrams to express this structure,
by allowing strings to cross without tangling. That is, we introduce components
(below, left) for every pair of sorts, and equations (below, right) expressing that
these are natural isomorphisms. Adding this structure to the free monoidal cat-
egory over a polygraph presents the free symmetric monoidal category over that
polygraph.

=
=

f

f

g

g

Definition A.3. A strict monoidal functor, F : C → D, is a monoid homor-
phism between their objects, Fobj : Cobj → Dobj, and an assignment of morphisms
f ∈ C(X;Y) to morphisms F (f) ∈ D(FX;FY). A functor must preserve se-
quential composition, F (f # g) = F (f) # F (g); parallel composition, F (f ⊗ g) =
F (f) ⊗ F (g); and identities, F (id) = id. Strict monoidal categories with strict
monoidal functors form a category, MonCat.

B Pumping lemma for regular monoidal languages

Lemma B.1 ([18]). Let L be a regular monoidal language. Then ∀k ∈ N+,∃n
such that for any s ∈ L where s may be factorized into m ⩾ n non-identity
morphisms s = s0 # ... # si # ... # sm where si : ki → ki+1, with 1 ⩽ ki ⩽ k, there
exists i, j, ℓ such that ki = kj = ℓ and s′ # (s′′)a # s′′′ ∈ L for all a ⩾ 0, where
s′ = s0 # ... # si, s′′ = si+1 # ... # sj, and s′′′ = sj+1 # ... # sm

Proof. Let L be the language of a grammar (ϕ : M → Γ, I, F). If L has a finite
number of connected string diagrams, then for any k take n be longer than the
longest factorization over all diagrams in L, then the lemma holds vacuously.
Otherwise let k be given, then take n =

∑k
i=0 |SM |i. Let s ∈ L, such that it has

a factorization of the form above. Then by the pigeonhole principle, we will have
i, j, ℓ as required in the lemma.

Lemma B.2 (Contrapositive form). Let L be a language and suppose that
∃k ∈ N+ such that ∀n there exists a morphism w ∈ L that factorizes as in
Lemma B.1 and for all i, j, ℓ such that ki = kj = ℓ, there exists an a such that
the pumped morphism w′w′′aw′′′ /∈ L, then L is not regular monoidal.

Remark B.1. This reduces to the pumping lemma for words and trees, taking
k = 1.

C Optical contour-splice adjunction

Theorem 5.1. Optical contour is left adjoint to raw optics; there exists an ad-
junction (C ⊣ ROpt) : MonCat → MultiCat.

Proof. Let C be a strict monoidal category and let M be a multicategory. We
need first to prove that the two constructions involved, C and ROpt, are indeed
functors – this proof, although tedious, proceeds as expected and we prefer to
omit it here.

We will show that there is a bijection between strict monoidal functors CM →
C and multifunctors M → ROpt[C].

– The objects of ROpt[C] are pairs of objects. Mapping an object of the mul-
ticategory X ∈ M to a pair of objects is the same as mapping two objects,
XL and XR, to the objects of the category C.

– Mapping a multimorphism f ∈ M(X1, ..., Xn;Y) to the multicategory of raw
optics consists of choosing a family of functions (f0, ..., fn) together with two
families of objects M1, ..,Mn and N1, ..., Nn. This is the same choice we need
to map each one of the components of the contour of f ∈ M(X1, ..., Xn;Y)
to that exact family of functions.

That is, we have only checked that, by construction, the maps out of the contour
correspond with multifunctors to raw optics. The adjunction remains concep-
tually interesting because it links two concepts that have different conceptual
interpretations, even if it can be reduced to note that one has been defined as
the adjoint to the other.

D Cartesian monoidal categories

The free cartesian category over a polygraph may be presented using string
diagrams. As with symmetric monoidal categories, we add some new generators
and equations, to the effect that every object is equipped with a natural and
uniform counital comagma structure. That is, in addition to symmetric structure,
we add the following generators and equations.

f f
f

= = =

This structure must be uniform, in the sense that the structure on tensor
products is given by tensor products of structure. See [47, Section 4.1] for more
details.

Remark D.1. In most sources, cartesian categories are presented in terms of
the presence of cocommutative comonoid structure. However, it is folklore that
counital comagmas suffice [36, p. 122] [41].

E Hypergraph categories

The free hypergraph category over a polygraph may be presented using string
diagrams. As with cartesian monoidal categories, we add some new generators
and equations. This extra structure amounts to equipping every object with the
structure of a special commutative Frobenius algebra. That is, in addition to
symmetry we ask for the following generators and equations:

===

= = ==

==

Moreover, this structure must be uniform in the sense that the structure on
tensor products of objects is given by tensor products of the structure, see [21]
for more details.

The morphisms of the free hypergraph category over a polygraph are in bi-
jection with multi-pointed hypergraphs in the sense of Habel [25, Definition 1.3],

that is, hypergraphs with “open” source and target boundaries [5]. Intuitively,
string diagrams in a hypergraph category are hypergraphs.

F Details for Section 3

Proposition 3.1. For every non-deterministic monoidal automaton there is a
regular monoidal grammar with the same language, and vice-versa.

Proof (Proof sketch). From the transitions ∆γ ⊆ Qn × Qm of a monoidal au-
tomaton, we can build a polygraph Q by taking a generator γi : q1 ⊗ ...⊗ qn →
q′1⊗ ...⊗q′m for each ((q1, ..., qn), (q

′
1, ..., q

′
m)) ∈ ∆γ . The morphism of polygraphs

ψ : Q → Γ simply maps γi to γ. The reverse is analogous.

Definition F.1. Given a non-deterministic monoidal automaton over a poly-
graph Γ , we inductively define transition functions δ̂n,m : Qn × F⊗Γ (n,m) →
P(Qm) over string diagrams in the free monoidal category over Γ with arity n
and coarity m as follows:

– for a generator γ ∈ Γ , δ̂n,m(q, γ) := δn,m(γ),
– for identities, δ̂n,n(q, id) := {q},
– for a tensor product s1 ⊗ s2, where s1 : n1 → m1, s2 : n2 → m2 with
n = n1 + n2,m = m1 +m2 and q = q1++q2, δ̂n,m(q, s1 ⊗ s2) := {p++p′ |
p ∈ δ̂n1,m1(q1, s1), p

′ ∈ δ̂n2,m2(q2, s2)},
– for a composite s; s′, where s : n→ p, s′ : p→ m, δ̂n,m(q, s; s′) := {δ̂p,m(q′, s′) |
q′ ∈ δ̂n,m(q, s)}.

G Proofs omitted from Section 4

Proposition 4.1. The multicategory of derivable sequents in the theory of di-
agram contexts is symmetric. In logical terms, exchange is admissible in the
theory of diagram contexts: whenever we can prove that a diagram context exists
under certain context Γ , we can prove that it exists under a permutation of Γ .

Proof. Assume we derived a term Γ, u , v ,∆ ⊢ t; let us show we could also
derive Γ, v , u ,∆ ⊢ t. We proceed by structural induction, recurring to the
first term where the variables u and v appeared at two sides of the rule:
this rule must have been of the form t1 # t2 or t1 ⊗ t2 for Γ 1, u ,∆1 ⊢ t1 and
Γ 2, v ,∆2 ⊢ t2, where Γ ∈ Shuf(Γ1;Γ2) and ∆ ∈ Shuf(∆1;∆2). In that case, we
can deduce that Γ, v , u ,∆ ∈ Shuf(Γ 1, u ,∆1;Γ 2, v ,∆2); as a consequence,
Γ, v , u ,∆ ⊢ t can be derived.

Proposition 4.2. Derivable sequents in the theory of diagram contexts over a
polygraph P form the free strict monoidal category over the polygraph extended
with special “hole” generators, P + {hA,B : A → B | A,B ∈ P∗

obj}. Derivable

sequents over the empty context form the free strict monoidal category over the
polygraph P. Moreover, there exists a symmetric multifunctor

i : |F⊗P| → P

interpreting each monoidal term as its derivable sequent.

Proof. We proceed by structural induction. We first note that the three nullary
rules of the logic correspond to terms of the free strict monoidal category over
the polygraph P + {hA,B | A,B ∈ P∗

obj}. The first corresponds to identities,
the second corresponds to generators, and the third, when employed with types
A and B, corresponds to the additional generator hA,B . We then note that
the two binary rules correspond to sequential and parallel composition, thus
obtaining the classical algebraic theory of monoidal terms over the polygraph
P + {hA,B | A,B ∈ P∗

obj}.
Quotienting over the equations of monoidal categories, as we do when we

impose the equations of the theory of diagram contexts, recovers the free strict
monoidal category: in a tautological sense, the free strict monoidal category is
precisely the one generated by the operations of a monoidal category quotiented
by the axioms of a monoidal category. This contrasts sharply with a much more
interesting description of the free strict monoidal category: that using string
diagrams. As both are exhibited as satisfying the same universal property, they
are necessarily equivalent.

As a particular case, a derivable sequent over the empty context must, by
structural induction, avoid any use of the holes. As a consequence of the previous
reasoning, it is generated from the polygraph P and it must be a morphism of
the free strict monoidal category.

Finally, the symmetric multifunctor can be described by structural induction:
it preserves identities, holes, sequential and parallel compositions, and it sends
each monoidal term with no holes h ∈ |F⊗P| to its derivation under the empty
context, h ∈ P .

H Details from Section 5

Proposition H.1. The following square of adjunctions commutes.

PolyGraph MultiGraph

MonCat MultiCat

ROpt
F▽F⊗

ROpt

U

C

U
C

⊣

⊣

⊣

⊣

Proof. This follows by unwinding definitions.

I Proofs omitted from Section 6

Lemma 6.1. Any morphism of symmetric multigraphs underlying a context-free
monoidal grammar, ϕ : G → | C |, factors (non-uniquely) through the quotient-
ing of raw optics (Proposition 5.1); meaning that there exists some multigraph
G′ satisfying G = clique(G′), and some morphism ϕr : G

′ → |ROpt[C]|, such that
ϕ = clique(ϕr) # q∗.

Proof. This is a consequence of the fact that q∗ is full. Given any diagram
context, we argue that we can obtain a (non-unique) diagram context of the
form of a raw optic

t1 # (idM1
⊗ x1 ⊗ idN1

) # t2 # (idM2
⊗ x2 ⊗ idN2

) # ... # (idMn
⊗ xn ⊗ idNn

) # tn+1.

Indeed, by structural induction, if the diagram is formed by a hole or a gen-
erator, it can be put in raw optic form by adding identities; if the diagram is
a composition, we can put both factors in raw optic form and check that their
composition is again in raw optic form; if the diagram is a tensoring of two dia-
grams in raw optic form, we can always apply the interchange law and note that
whiskering a raw optic by an object returns again a raw optic.

It is the case that every map G → clique(H) arises as a map G′ → H for
some multigraph G′ such that G = clique(G′). Combining both facts, we obtain
the desired result.

Lemma 6.2. Let G = (ϕ, S) be a context-free monoidal grammar. Then the
language of any raw representative ϕr of ϕ (with start symbol S) equals the
language of G. That is, ϕr[F▽G

′(;S)] = ϕ[F▽G(;S)].

Proof (Proof sketch). A raw representative amounts to choosing a specific order-
ing of the holes and generators in a diagram context. By definition (Lemma 6.1),
these quotient to the original diagram contexts. In particular, closed derivations
quotient to the same element of C.

Lemma 6.3. A raw representative ϕr : G′ → |ROpt[C]| uniquely determines a
strict monoidal functor Iϕ : F⊗(CG′) → C.

Proof. Using the free-forgetful adjunction, the raw representative, ϕr, determines
a unique multifunctor F▽G

′ → ROpt[C]. Using the adjunction of Theorem 5.1,
this in turn determines a unique monoidal functor C(F▽G

′) → C. Finally, using
the commutativity of C with F▽ (Proposition H.1), we obtain Iϕ : F⊗(CG′) → C.
Explicitly, the action of Iϕ on generators is given by: AL 7→ π1(ϕr(A)), AR 7→
π2(ϕr(A)), (f, i) 7→ πi(ϕr(f)), where π are projections.

Lemma 6.4. Given a multigraph G, there is a bijection between derivations
rooted at a sort S and optical contours from SL to SR, i.e. F▽G(;S) ∼= F⊗(CG)(SL;SR).

Proof. Let d ∈ F▽G(;S) be a derivation. We define a family of functions {CX :
F▽G(;X) → F⊗(CG)(XL, XR)}X∈G by structural recursion. There are two

cases: if d is a generating operation d ∈ G(;S), then CS(d) := (d, 0) : SL → SR.
Otherwise, d is a composite (p1, ..., pn) # g where g ∈ G(X1, ..., Xn;S) is a gen-
erating operation and pi ∈ F▽G(;Xi), in which case CS(d) := (g, 0) # CX1

(p1) #
(g, 1) # ... # CXn

(pn) # (g, n).
We define functions C−1

S right to left in a similar fashion. Let c ∈ F⊗(CG)(SL;SR)
be an optical contour. If c = (c′, 0) is a generating sector then C−1

S (c) := c′. Oth-
erwise c is a composite ((g, 0) : SL →M1⊗XL

1 ⊗N1)#c1 #((g, 1) : M1⊗XR
1 ⊗N1 →

M2⊗X
L
2 ⊗N2)#...#cn#((g, n) : M1⊗X

R
1 ⊗N1 → SR) where (g, i) are generating sec-

tors and ci ∈ F⊗(CG)(XL
i , X

R
i), in which case C−1

S (c) := (C−1
X1

(c1), ..., C
−1
Xn

(cn))#
g. It is clear that these functions are mutually inverse and hence form a bijection.

Theorem 6.1. The language of a context-free monoidal grammar G = (ϕ : G→
| C |, S) equals the image of a regular representative under the monoidal functor
Iϕ of Lemma 6.3.

Proof. By Lemma 6.2, the languages L(G) and L((ϕr, S)) are equal for any
raw representative ϕr of ϕ, where L((ϕr,S)) = ϕr[F▽G

′(;S)]. It therefore suf-
fices to show that ϕr[F▽G

′(;S)] = Iϕ[F⊗(CG′)(SL;SR)]. We show the inclusion
left to right. Let d ∈ F▽G

′(;S) be a derivation, and let CS(d) be the corre-
sponding optical contour given by Lemma 6.4. Then by the definition of Iϕ
(Lemma 6.3) and CS , we have Iϕ(CS(d)) = ϕr(d). We show the inclusion right
to left. Let g ∈ F⊗(CG′)(SL;SR) be a contour from SL to SR, and let C−1

S (g) be
the corresponding derivation given by Lemma 6.4. Then just as before we have
ϕr(C

−1
S (g)) = Iϕ(g).

Rights statement: For the purpose of Open Access the Author has applied
a Creative Commons-BY public copyright license to any Author Accepted
Manuscript version arising from this submission.

	Context-Free Languages of String Diagrams

